| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtophaus.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | qtophaus.e | ⊢  ∼   =  ( ◡ 𝐹  ∘  𝐹 ) | 
						
							| 3 |  | qtophaus.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ) | 
						
							| 4 |  | qtophaus.1 | ⊢ ( 𝜑  →  𝐽  ∈  Haus ) | 
						
							| 5 |  | qtophaus.2 | ⊢ ( 𝜑  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 6 |  | qtophaus.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( 𝐹  “  𝑥 )  ∈  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 7 |  | qtophaus.4 | ⊢ ( 𝜑  →   ∼   ∈  ( Clsd ‘ ( 𝐽  ×t  𝐽 ) ) ) | 
						
							| 8 |  | haustop | ⊢ ( 𝐽  ∈  Haus  →  𝐽  ∈  Top ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 10 |  | fofn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  𝐹  Fn  𝑋 ) | 
						
							| 11 | 5 10 | syl | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 12 | 1 | qtoptop | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐹  Fn  𝑋 )  →  ( 𝐽  qTop  𝐹 )  ∈  Top ) | 
						
							| 13 | 9 11 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  qTop  𝐹 )  ∈  Top ) | 
						
							| 14 |  | txtop | ⊢ ( ( ( 𝐽  qTop  𝐹 )  ∈  Top  ∧  ( 𝐽  qTop  𝐹 )  ∈  Top )  →  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  ∈  Top ) | 
						
							| 15 | 13 13 14 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  ∈  Top ) | 
						
							| 16 |  | idssxp | ⊢ (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  ⊆  ( ∪  ( 𝐽  qTop  𝐹 )  ×  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 17 |  | eqid | ⊢ ∪  ( 𝐽  qTop  𝐹 )  =  ∪  ( 𝐽  qTop  𝐹 ) | 
						
							| 18 | 17 17 | txuni | ⊢ ( ( ( 𝐽  qTop  𝐹 )  ∈  Top  ∧  ( 𝐽  qTop  𝐹 )  ∈  Top )  →  ( ∪  ( 𝐽  qTop  𝐹 )  ×  ∪  ( 𝐽  qTop  𝐹 ) )  =  ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 19 | 13 13 18 | syl2anc | ⊢ ( 𝜑  →  ( ∪  ( 𝐽  qTop  𝐹 )  ×  ∪  ( 𝐽  qTop  𝐹 ) )  =  ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 20 | 16 19 | sseqtrid | ⊢ ( 𝜑  →  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 21 | 1 | qtopuni | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  𝑌  =  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 22 | 9 5 21 | syl2anc | ⊢ ( 𝜑  →  𝑌  =  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 23 | 22 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝑌  ×  𝑌 )  =  ( ∪  ( 𝐽  qTop  𝐹 )  ×  ∪  ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 24 | 23 19 | eqtr2d | ⊢ ( 𝜑  →  ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  =  ( 𝑌  ×  𝑌 ) ) | 
						
							| 25 | 22 | eqcomd | ⊢ ( 𝜑  →  ∪  ( 𝐽  qTop  𝐹 )  =  𝑌 ) | 
						
							| 26 | 25 | reseq2d | ⊢ ( 𝜑  →  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  =  (  I   ↾  𝑌 ) ) | 
						
							| 27 | 24 26 | difeq12d | ⊢ ( 𝜑  →  ( ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  ∖  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) ) )  =  ( ( 𝑌  ×  𝑌 )  ∖  (  I   ↾  𝑌 ) ) ) | 
						
							| 28 |  | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  V | 
						
							| 29 | 3 28 | fnmpoi | ⊢ 𝐻  Fn  ( 𝑋  ×  𝑋 ) | 
						
							| 30 |  | difss | ⊢ ( ( 𝑋  ×  𝑋 )  ∖   ∼  )  ⊆  ( 𝑋  ×  𝑋 ) | 
						
							| 31 |  | fvelimab | ⊢ ( ( 𝐻  Fn  ( 𝑋  ×  𝑋 )  ∧  ( ( 𝑋  ×  𝑋 )  ∖   ∼  )  ⊆  ( 𝑋  ×  𝑋 ) )  →  ( 𝑐  ∈  ( 𝐻  “  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ↔  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 ) ) | 
						
							| 32 | 29 30 31 | mp2an | ⊢ ( 𝑐  ∈  ( 𝐻  “  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ↔  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 33 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  𝑥  ∈  𝑋 ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  𝑦  ∈  𝑋 ) | 
						
							| 35 |  | opelxpi | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  〈 𝑥 ,  𝑦 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 36 | 33 34 35 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  〈 𝑥 ,  𝑦 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 37 |  | df-br | ⊢ ( 𝑥 ( 𝑋  ×  𝑋 ) 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 38 | 36 37 | sylibr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  𝑥 ( 𝑋  ×  𝑋 ) 𝑦 ) | 
						
							| 39 |  | simpllr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑎 ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ( 𝐹 ‘ 𝑦 )  =  𝑏 ) | 
						
							| 41 | 39 40 | opeq12d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 42 |  | simp-5r | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  𝑐  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 43 |  | simp-8r | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 44 | 42 43 | eqeltrrd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  〈 𝑎 ,  𝑏 〉  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 45 | 41 44 | eqeltrd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 46 |  | relxp | ⊢ Rel  ( 𝑌  ×  𝑌 ) | 
						
							| 47 |  | opeldifid | ⊢ ( Rel  ( 𝑌  ×  𝑌 )  →  ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  )  ↔  ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( 𝑌  ×  𝑌 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 48 | 46 47 | ax-mp | ⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  )  ↔  ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( 𝑌  ×  𝑌 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 49 | 45 48 | sylib | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( 𝑌  ×  𝑌 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 50 | 49 | simprd | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 51 | 11 | ad8antr | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  𝐹  Fn  𝑋 ) | 
						
							| 52 | 2 | fcoinvbr | ⊢ ( ( 𝐹  Fn  𝑋  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  ∼  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 53 | 51 33 34 52 | syl3anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ( 𝑥  ∼  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 54 | 53 | necon3bbid | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ( ¬  𝑥  ∼  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 55 | 50 54 | mpbird | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ¬  𝑥  ∼  𝑦 ) | 
						
							| 56 |  | df-br | ⊢ ( 𝑥 ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ) | 
						
							| 57 |  | brdif | ⊢ ( 𝑥 ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) 𝑦  ↔  ( 𝑥 ( 𝑋  ×  𝑋 ) 𝑦  ∧  ¬  𝑥  ∼  𝑦 ) ) | 
						
							| 58 | 56 57 | bitr3i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  )  ↔  ( 𝑥 ( 𝑋  ×  𝑋 ) 𝑦  ∧  ¬  𝑥  ∼  𝑦 ) ) | 
						
							| 59 | 38 55 58 | sylanbrc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  〈 𝑥 ,  𝑦 〉  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ) | 
						
							| 60 | 3 33 34 | fvproj | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ( 𝐻 ‘ 〈 𝑥 ,  𝑦 〉 )  =  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ) | 
						
							| 61 | 41 60 42 | 3eqtr4d | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ( 𝐻 ‘ 〈 𝑥 ,  𝑦 〉 )  =  𝑐 ) | 
						
							| 62 |  | fveqeq2 | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 𝐻 ‘ 𝑧 )  =  𝑐  ↔  ( 𝐻 ‘ 〈 𝑥 ,  𝑦 〉 )  =  𝑐 ) ) | 
						
							| 63 | 62 | rspcev | ⊢ ( ( 〈 𝑥 ,  𝑦 〉  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  )  ∧  ( 𝐻 ‘ 〈 𝑥 ,  𝑦 〉 )  =  𝑐 )  →  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 64 | 59 61 63 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑏 )  →  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 65 |  | fofun | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  Fun  𝐹 ) | 
						
							| 66 | 5 65 | syl | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 67 | 66 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  →  Fun  𝐹 ) | 
						
							| 68 | 67 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  →  Fun  𝐹 ) | 
						
							| 69 |  | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  →  𝑏  ∈  𝑌 ) | 
						
							| 70 |  | foima | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  ( 𝐹  “  𝑋 )  =  𝑌 ) | 
						
							| 71 | 5 70 | syl | ⊢ ( 𝜑  →  ( 𝐹  “  𝑋 )  =  𝑌 ) | 
						
							| 72 | 71 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  →  ( 𝐹  “  𝑋 )  =  𝑌 ) | 
						
							| 73 | 72 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  →  ( 𝐹  “  𝑋 )  =  𝑌 ) | 
						
							| 74 | 69 73 | eleqtrrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  →  𝑏  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 75 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑏  ∈  ( 𝐹  “  𝑋 ) )  →  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  𝑏 ) | 
						
							| 76 | 68 74 75 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  →  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  𝑏 ) | 
						
							| 77 | 64 76 | r19.29a | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑎 )  →  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 78 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  →  𝑎  ∈  𝑌 ) | 
						
							| 79 | 78 72 | eleqtrrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  →  𝑎  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 80 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑎  ∈  ( 𝐹  “  𝑋 ) )  →  ∃ 𝑥  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  =  𝑎 ) | 
						
							| 81 | 67 79 80 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  →  ∃ 𝑥  ∈  𝑋 ( 𝐹 ‘ 𝑥 )  =  𝑎 ) | 
						
							| 82 | 77 81 | r19.29a | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  ∧  𝑎  ∈  𝑌 )  ∧  𝑏  ∈  𝑌 )  ∧  𝑐  =  〈 𝑎 ,  𝑏 〉 )  →  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 83 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  →  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 84 | 83 | eldifad | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  →  𝑐  ∈  ( 𝑌  ×  𝑌 ) ) | 
						
							| 85 |  | elxp2 | ⊢ ( 𝑐  ∈  ( 𝑌  ×  𝑌 )  ↔  ∃ 𝑎  ∈  𝑌 ∃ 𝑏  ∈  𝑌 𝑐  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 86 | 84 85 | sylib | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  →  ∃ 𝑎  ∈  𝑌 ∃ 𝑏  ∈  𝑌 𝑐  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 87 | 82 86 | r19.29vva | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) )  →  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 88 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  𝑧  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 89 | 88 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ 〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 90 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 91 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  𝑥  ∈  𝑋 ) | 
						
							| 92 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  𝑦  ∈  𝑋 ) | 
						
							| 93 | 3 91 92 | fvproj | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ( 𝐻 ‘ 〈 𝑥 ,  𝑦 〉 )  =  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ) | 
						
							| 94 | 89 90 93 | 3eqtr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  𝑐  =  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ) | 
						
							| 95 |  | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 96 | 5 95 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 97 | 96 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 98 | 97 91 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑌 ) | 
						
							| 99 | 97 92 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑌 ) | 
						
							| 100 |  | opelxp | ⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( 𝑌  ×  𝑌 )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑌 ) ) | 
						
							| 101 | 98 99 100 | sylanbrc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( 𝑌  ×  𝑌 ) ) | 
						
							| 102 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ) | 
						
							| 103 | 88 102 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  〈 𝑥 ,  𝑦 〉  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ) | 
						
							| 104 | 58 | simprbi | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  )  →  ¬  𝑥  ∼  𝑦 ) | 
						
							| 105 | 103 104 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ¬  𝑥  ∼  𝑦 ) | 
						
							| 106 | 11 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  𝐹  Fn  𝑋 ) | 
						
							| 107 | 106 91 92 52 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ( 𝑥  ∼  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 108 | 107 | necon3bbid | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ( ¬  𝑥  ∼  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 109 | 105 108 | mpbid | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 110 | 101 109 48 | sylanbrc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 111 | 94 110 | eqeltrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  =  〈 𝑥 ,  𝑦 〉 )  →  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 112 |  | eldifi | ⊢ ( 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  )  →  𝑧  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  →  𝑧  ∈  ( 𝑋  ×  𝑋 ) ) | 
						
							| 114 |  | elxp2 | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑋 )  ↔  ∃ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝑋 𝑧  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 115 | 113 114 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  →  ∃ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝑋 𝑧  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  →  ∃ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝑋 𝑧  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 117 | 111 116 | r19.29vva | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  →  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 118 | 117 | r19.29an | ⊢ ( ( 𝜑  ∧  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 )  →  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 119 | 87 118 | impbida | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  )  ↔  ∃ 𝑧  ∈  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) ( 𝐻 ‘ 𝑧 )  =  𝑐 ) ) | 
						
							| 120 | 32 119 | bitr4id | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( 𝐻  “  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ↔  𝑐  ∈  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) ) | 
						
							| 121 | 120 | eqrdv | ⊢ ( 𝜑  →  ( 𝐻  “  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  =  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 122 |  | ssv | ⊢ 𝑌  ⊆  V | 
						
							| 123 |  | xpss2 | ⊢ ( 𝑌  ⊆  V  →  ( 𝑌  ×  𝑌 )  ⊆  ( 𝑌  ×  V ) ) | 
						
							| 124 |  | difres | ⊢ ( ( 𝑌  ×  𝑌 )  ⊆  ( 𝑌  ×  V )  →  ( ( 𝑌  ×  𝑌 )  ∖  (  I   ↾  𝑌 ) )  =  ( ( 𝑌  ×  𝑌 )  ∖   I  ) ) | 
						
							| 125 | 122 123 124 | mp2b | ⊢ ( ( 𝑌  ×  𝑌 )  ∖  (  I   ↾  𝑌 ) )  =  ( ( 𝑌  ×  𝑌 )  ∖   I  ) | 
						
							| 126 | 121 125 | eqtr4di | ⊢ ( 𝜑  →  ( 𝐻  “  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  =  ( ( 𝑌  ×  𝑌 )  ∖  (  I   ↾  𝑌 ) ) ) | 
						
							| 127 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 128 | 9 127 | sylib | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 129 |  | qtoptopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( 𝐽  qTop  𝐹 )  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 130 | 128 5 129 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  qTop  𝐹 )  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 131 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐽 ( 𝐹  “  𝑥 )  ∈  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 132 |  | imaeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹  “  𝑥 )  =  ( 𝐹  “  𝑦 ) ) | 
						
							| 133 | 132 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹  “  𝑥 )  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝐹  “  𝑦 )  ∈  ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 134 | 133 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝐽 ( 𝐹  “  𝑥 )  ∈  ( 𝐽  qTop  𝐹 )  ↔  ∀ 𝑦  ∈  𝐽 ( 𝐹  “  𝑦 )  ∈  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 135 | 131 134 | sylib | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐽 ( 𝐹  “  𝑦 )  ∈  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 136 | 135 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐽 )  →  ( 𝐹  “  𝑦 )  ∈  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 137 | 1 1 | txuni | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐽  ∈  Top )  →  ( 𝑋  ×  𝑋 )  =  ∪  ( 𝐽  ×t  𝐽 ) ) | 
						
							| 138 | 9 9 137 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑋 )  =  ∪  ( 𝐽  ×t  𝐽 ) ) | 
						
							| 139 | 138 | difeq1d | ⊢ ( 𝜑  →  ( ( 𝑋  ×  𝑋 )  ∖   ∼  )  =  ( ∪  ( 𝐽  ×t  𝐽 )  ∖   ∼  ) ) | 
						
							| 140 |  | txtop | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐽  ∈  Top )  →  ( 𝐽  ×t  𝐽 )  ∈  Top ) | 
						
							| 141 | 9 9 140 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ×t  𝐽 )  ∈  Top ) | 
						
							| 142 |  | fcoinver | ⊢ ( 𝐹  Fn  𝑋  →  ( ◡ 𝐹  ∘  𝐹 )  Er  𝑋 ) | 
						
							| 143 | 11 142 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  ∘  𝐹 )  Er  𝑋 ) | 
						
							| 144 |  | ereq1 | ⊢ (  ∼   =  ( ◡ 𝐹  ∘  𝐹 )  →  (  ∼   Er  𝑋  ↔  ( ◡ 𝐹  ∘  𝐹 )  Er  𝑋 ) ) | 
						
							| 145 | 2 144 | ax-mp | ⊢ (  ∼   Er  𝑋  ↔  ( ◡ 𝐹  ∘  𝐹 )  Er  𝑋 ) | 
						
							| 146 | 143 145 | sylibr | ⊢ ( 𝜑  →   ∼   Er  𝑋 ) | 
						
							| 147 |  | erssxp | ⊢ (  ∼   Er  𝑋  →   ∼   ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 148 | 146 147 | syl | ⊢ ( 𝜑  →   ∼   ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 149 | 148 138 | sseqtrd | ⊢ ( 𝜑  →   ∼   ⊆  ∪  ( 𝐽  ×t  𝐽 ) ) | 
						
							| 150 |  | eqid | ⊢ ∪  ( 𝐽  ×t  𝐽 )  =  ∪  ( 𝐽  ×t  𝐽 ) | 
						
							| 151 | 150 | iscld2 | ⊢ ( ( ( 𝐽  ×t  𝐽 )  ∈  Top  ∧   ∼   ⊆  ∪  ( 𝐽  ×t  𝐽 ) )  →  (  ∼   ∈  ( Clsd ‘ ( 𝐽  ×t  𝐽 ) )  ↔  ( ∪  ( 𝐽  ×t  𝐽 )  ∖   ∼  )  ∈  ( 𝐽  ×t  𝐽 ) ) ) | 
						
							| 152 | 141 149 151 | syl2anc | ⊢ ( 𝜑  →  (  ∼   ∈  ( Clsd ‘ ( 𝐽  ×t  𝐽 ) )  ↔  ( ∪  ( 𝐽  ×t  𝐽 )  ∖   ∼  )  ∈  ( 𝐽  ×t  𝐽 ) ) ) | 
						
							| 153 | 7 152 | mpbid | ⊢ ( 𝜑  →  ( ∪  ( 𝐽  ×t  𝐽 )  ∖   ∼  )  ∈  ( 𝐽  ×t  𝐽 ) ) | 
						
							| 154 | 139 153 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑋  ×  𝑋 )  ∖   ∼  )  ∈  ( 𝐽  ×t  𝐽 ) ) | 
						
							| 155 | 96 96 128 128 130 130 6 136 154 3 | txomap | ⊢ ( 𝜑  →  ( 𝐻  “  ( ( 𝑋  ×  𝑋 )  ∖   ∼  ) )  ∈  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 156 | 126 155 | eqeltrrd | ⊢ ( 𝜑  →  ( ( 𝑌  ×  𝑌 )  ∖  (  I   ↾  𝑌 ) )  ∈  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 157 | 27 156 | eqeltrd | ⊢ ( 𝜑  →  ( ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  ∖  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) ) )  ∈  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 158 |  | eqid | ⊢ ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  =  ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 159 | 158 | iscld2 | ⊢ ( ( ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  ∈  Top  ∧  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) )  →  ( (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  ∈  ( Clsd ‘ ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) )  ↔  ( ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  ∖  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) ) )  ∈  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) ) | 
						
							| 160 | 159 | biimpar | ⊢ ( ( ( ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  ∈  Top  ∧  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  ⊆  ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) )  ∧  ( ∪  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) )  ∖  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) ) )  ∈  ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) )  →  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  ∈  ( Clsd ‘ ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) ) | 
						
							| 161 | 15 20 157 160 | syl21anc | ⊢ ( 𝜑  →  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  ∈  ( Clsd ‘ ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) ) | 
						
							| 162 | 17 | hausdiag | ⊢ ( ( 𝐽  qTop  𝐹 )  ∈  Haus  ↔  ( ( 𝐽  qTop  𝐹 )  ∈  Top  ∧  (  I   ↾  ∪  ( 𝐽  qTop  𝐹 ) )  ∈  ( Clsd ‘ ( ( 𝐽  qTop  𝐹 )  ×t  ( 𝐽  qTop  𝐹 ) ) ) ) ) | 
						
							| 163 | 13 161 162 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐽  qTop  𝐹 )  ∈  Haus ) |