Step |
Hyp |
Ref |
Expression |
1 |
|
qtophaus.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
qtophaus.e |
⊢ ∼ = ( ◡ 𝐹 ∘ 𝐹 ) |
3 |
|
qtophaus.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
4 |
|
qtophaus.1 |
⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
5 |
|
qtophaus.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
6 |
|
qtophaus.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
7 |
|
qtophaus.4 |
⊢ ( 𝜑 → ∼ ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ) |
8 |
|
haustop |
⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
10 |
|
fofn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
12 |
1
|
qtoptop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
13 |
9 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
14 |
|
txtop |
⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ ( 𝐽 qTop 𝐹 ) ∈ Top ) → ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ∈ Top ) |
15 |
13 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ∈ Top ) |
16 |
|
idssxp |
⊢ ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ⊆ ( ∪ ( 𝐽 qTop 𝐹 ) × ∪ ( 𝐽 qTop 𝐹 ) ) |
17 |
|
eqid |
⊢ ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝐽 qTop 𝐹 ) |
18 |
17 17
|
txuni |
⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ ( 𝐽 qTop 𝐹 ) ∈ Top ) → ( ∪ ( 𝐽 qTop 𝐹 ) × ∪ ( 𝐽 qTop 𝐹 ) ) = ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) |
19 |
13 13 18
|
syl2anc |
⊢ ( 𝜑 → ( ∪ ( 𝐽 qTop 𝐹 ) × ∪ ( 𝐽 qTop 𝐹 ) ) = ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) |
20 |
16 19
|
sseqtrid |
⊢ ( 𝜑 → ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) |
21 |
1
|
qtopuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
22 |
9 5 21
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
23 |
22
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝑌 × 𝑌 ) = ( ∪ ( 𝐽 qTop 𝐹 ) × ∪ ( 𝐽 qTop 𝐹 ) ) ) |
24 |
23 19
|
eqtr2d |
⊢ ( 𝜑 → ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) = ( 𝑌 × 𝑌 ) ) |
25 |
22
|
eqcomd |
⊢ ( 𝜑 → ∪ ( 𝐽 qTop 𝐹 ) = 𝑌 ) |
26 |
25
|
reseq2d |
⊢ ( 𝜑 → ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) = ( I ↾ 𝑌 ) ) |
27 |
24 26
|
difeq12d |
⊢ ( 𝜑 → ( ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ∖ ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ) = ( ( 𝑌 × 𝑌 ) ∖ ( I ↾ 𝑌 ) ) ) |
28 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ V |
29 |
3 28
|
fnmpoi |
⊢ 𝐻 Fn ( 𝑋 × 𝑋 ) |
30 |
|
difss |
⊢ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ⊆ ( 𝑋 × 𝑋 ) |
31 |
|
fvelimab |
⊢ ( ( 𝐻 Fn ( 𝑋 × 𝑋 ) ∧ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑐 ∈ ( 𝐻 “ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ↔ ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ) |
32 |
29 30 31
|
mp2an |
⊢ ( 𝑐 ∈ ( 𝐻 “ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ↔ ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) |
33 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 𝑥 ∈ 𝑋 ) |
34 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 𝑦 ∈ 𝑋 ) |
35 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ) |
37 |
|
df-br |
⊢ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑋 ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ) |
39 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ( 𝐹 ‘ 𝑥 ) = 𝑎 ) |
40 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ( 𝐹 ‘ 𝑦 ) = 𝑏 ) |
41 |
39 40
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
42 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 𝑐 = 〈 𝑎 , 𝑏 〉 ) |
43 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
44 |
42 43
|
eqeltrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 〈 𝑎 , 𝑏 〉 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
45 |
41 44
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
46 |
|
relxp |
⊢ Rel ( 𝑌 × 𝑌 ) |
47 |
|
opeldifid |
⊢ ( Rel ( 𝑌 × 𝑌 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ↔ ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( 𝑌 × 𝑌 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |
48 |
46 47
|
ax-mp |
⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ↔ ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( 𝑌 × 𝑌 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
49 |
45 48
|
sylib |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( 𝑌 × 𝑌 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
50 |
49
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
51 |
11
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 𝐹 Fn 𝑋 ) |
52 |
2
|
fcoinvbr |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
53 |
51 33 34 52
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
54 |
53
|
necon3bbid |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ( ¬ 𝑥 ∼ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
55 |
50 54
|
mpbird |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ¬ 𝑥 ∼ 𝑦 ) |
56 |
|
df-br |
⊢ ( 𝑥 ( ( 𝑋 × 𝑋 ) ∖ ∼ ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) |
57 |
|
brdif |
⊢ ( 𝑥 ( ( 𝑋 × 𝑋 ) ∖ ∼ ) 𝑦 ↔ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ∧ ¬ 𝑥 ∼ 𝑦 ) ) |
58 |
56 57
|
bitr3i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ↔ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ∧ ¬ 𝑥 ∼ 𝑦 ) ) |
59 |
38 55 58
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) |
60 |
3 33 34
|
fvproj |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
61 |
41 60 42
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑐 ) |
62 |
|
fveqeq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐻 ‘ 𝑧 ) = 𝑐 ↔ ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑐 ) ) |
63 |
62
|
rspcev |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ∧ ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑐 ) → ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) |
64 |
59 61 63
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝑏 ) → ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) |
65 |
|
fofun |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → Fun 𝐹 ) |
66 |
5 65
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
67 |
66
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) → Fun 𝐹 ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) → Fun 𝐹 ) |
69 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) → 𝑏 ∈ 𝑌 ) |
70 |
|
foima |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
71 |
5 70
|
syl |
⊢ ( 𝜑 → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
72 |
71
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
73 |
72
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
74 |
69 73
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) → 𝑏 ∈ ( 𝐹 “ 𝑋 ) ) |
75 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑏 ∈ ( 𝐹 “ 𝑋 ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = 𝑏 ) |
76 |
68 74 75
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) → ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = 𝑏 ) |
77 |
64 76
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑎 ) → ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) |
78 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) → 𝑎 ∈ 𝑌 ) |
79 |
78 72
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) → 𝑎 ∈ ( 𝐹 “ 𝑋 ) ) |
80 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑎 ∈ ( 𝐹 “ 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑎 ) |
81 |
67 79 80
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑎 ) |
82 |
77 81
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) ∧ 𝑐 = 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) |
83 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) → 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
84 |
83
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) → 𝑐 ∈ ( 𝑌 × 𝑌 ) ) |
85 |
|
elxp2 |
⊢ ( 𝑐 ∈ ( 𝑌 × 𝑌 ) ↔ ∃ 𝑎 ∈ 𝑌 ∃ 𝑏 ∈ 𝑌 𝑐 = 〈 𝑎 , 𝑏 〉 ) |
86 |
84 85
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) → ∃ 𝑎 ∈ 𝑌 ∃ 𝑏 ∈ 𝑌 𝑐 = 〈 𝑎 , 𝑏 〉 ) |
87 |
82 86
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) → ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) |
88 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
89 |
88
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
90 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐻 ‘ 𝑧 ) = 𝑐 ) |
91 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑥 ∈ 𝑋 ) |
92 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑦 ∈ 𝑋 ) |
93 |
3 91 92
|
fvproj |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
94 |
89 90 93
|
3eqtr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑐 = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
95 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
96 |
5 95
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
97 |
96
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
98 |
97 91
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
99 |
97 92
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
100 |
|
opelxp |
⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( 𝑌 × 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) ) |
101 |
98 99 100
|
sylanbrc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( 𝑌 × 𝑌 ) ) |
102 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) |
103 |
88 102
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) |
104 |
58
|
simprbi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) → ¬ 𝑥 ∼ 𝑦 ) |
105 |
103 104
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ¬ 𝑥 ∼ 𝑦 ) |
106 |
11
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝐹 Fn 𝑋 ) |
107 |
106 91 92 52
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
108 |
107
|
necon3bbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( ¬ 𝑥 ∼ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
109 |
105 108
|
mpbid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
110 |
101 109 48
|
sylanbrc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
111 |
94 110
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 = 〈 𝑥 , 𝑦 〉 ) → 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
112 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) → 𝑧 ∈ ( 𝑋 × 𝑋 ) ) |
113 |
112
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) → 𝑧 ∈ ( 𝑋 × 𝑋 ) ) |
114 |
|
elxp2 |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑋 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
115 |
113 114
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
116 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑧 = 〈 𝑥 , 𝑦 〉 ) |
117 |
111 116
|
r19.29vva |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∧ ( 𝐻 ‘ 𝑧 ) = 𝑐 ) → 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
118 |
117
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) → 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
119 |
87 118
|
impbida |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ↔ ∃ 𝑧 ∈ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ( 𝐻 ‘ 𝑧 ) = 𝑐 ) ) |
120 |
32 119
|
bitr4id |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐻 “ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ↔ 𝑐 ∈ ( ( 𝑌 × 𝑌 ) ∖ I ) ) ) |
121 |
120
|
eqrdv |
⊢ ( 𝜑 → ( 𝐻 “ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) = ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
122 |
|
ssv |
⊢ 𝑌 ⊆ V |
123 |
|
xpss2 |
⊢ ( 𝑌 ⊆ V → ( 𝑌 × 𝑌 ) ⊆ ( 𝑌 × V ) ) |
124 |
|
difres |
⊢ ( ( 𝑌 × 𝑌 ) ⊆ ( 𝑌 × V ) → ( ( 𝑌 × 𝑌 ) ∖ ( I ↾ 𝑌 ) ) = ( ( 𝑌 × 𝑌 ) ∖ I ) ) |
125 |
122 123 124
|
mp2b |
⊢ ( ( 𝑌 × 𝑌 ) ∖ ( I ↾ 𝑌 ) ) = ( ( 𝑌 × 𝑌 ) ∖ I ) |
126 |
121 125
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐻 “ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) = ( ( 𝑌 × 𝑌 ) ∖ ( I ↾ 𝑌 ) ) ) |
127 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
128 |
9 127
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
129 |
|
qtoptopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
130 |
128 5 129
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
131 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐽 ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
132 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) |
133 |
132
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝐹 “ 𝑦 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) |
134 |
133
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐽 ( 𝐹 “ 𝑥 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝐹 “ 𝑦 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
135 |
131 134
|
sylib |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐽 ( 𝐹 “ 𝑦 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
136 |
135
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝐹 “ 𝑦 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
137 |
1 1
|
txuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝑋 × 𝑋 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
138 |
9 9 137
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 × 𝑋 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
139 |
138
|
difeq1d |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑋 ) ∖ ∼ ) = ( ∪ ( 𝐽 ×t 𝐽 ) ∖ ∼ ) ) |
140 |
|
txtop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
141 |
9 9 140
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
142 |
|
fcoinver |
⊢ ( 𝐹 Fn 𝑋 → ( ◡ 𝐹 ∘ 𝐹 ) Er 𝑋 ) |
143 |
11 142
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐹 ) Er 𝑋 ) |
144 |
|
ereq1 |
⊢ ( ∼ = ( ◡ 𝐹 ∘ 𝐹 ) → ( ∼ Er 𝑋 ↔ ( ◡ 𝐹 ∘ 𝐹 ) Er 𝑋 ) ) |
145 |
2 144
|
ax-mp |
⊢ ( ∼ Er 𝑋 ↔ ( ◡ 𝐹 ∘ 𝐹 ) Er 𝑋 ) |
146 |
143 145
|
sylibr |
⊢ ( 𝜑 → ∼ Er 𝑋 ) |
147 |
|
erssxp |
⊢ ( ∼ Er 𝑋 → ∼ ⊆ ( 𝑋 × 𝑋 ) ) |
148 |
146 147
|
syl |
⊢ ( 𝜑 → ∼ ⊆ ( 𝑋 × 𝑋 ) ) |
149 |
148 138
|
sseqtrd |
⊢ ( 𝜑 → ∼ ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
150 |
|
eqid |
⊢ ∪ ( 𝐽 ×t 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) |
151 |
150
|
iscld2 |
⊢ ( ( ( 𝐽 ×t 𝐽 ) ∈ Top ∧ ∼ ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) → ( ∼ ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ↔ ( ∪ ( 𝐽 ×t 𝐽 ) ∖ ∼ ) ∈ ( 𝐽 ×t 𝐽 ) ) ) |
152 |
141 149 151
|
syl2anc |
⊢ ( 𝜑 → ( ∼ ∈ ( Clsd ‘ ( 𝐽 ×t 𝐽 ) ) ↔ ( ∪ ( 𝐽 ×t 𝐽 ) ∖ ∼ ) ∈ ( 𝐽 ×t 𝐽 ) ) ) |
153 |
7 152
|
mpbid |
⊢ ( 𝜑 → ( ∪ ( 𝐽 ×t 𝐽 ) ∖ ∼ ) ∈ ( 𝐽 ×t 𝐽 ) ) |
154 |
139 153
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ∈ ( 𝐽 ×t 𝐽 ) ) |
155 |
96 96 128 128 130 130 6 136 154 3
|
txomap |
⊢ ( 𝜑 → ( 𝐻 “ ( ( 𝑋 × 𝑋 ) ∖ ∼ ) ) ∈ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) |
156 |
126 155
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝑌 × 𝑌 ) ∖ ( I ↾ 𝑌 ) ) ∈ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) |
157 |
27 156
|
eqeltrd |
⊢ ( 𝜑 → ( ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ∖ ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) |
158 |
|
eqid |
⊢ ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) = ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) |
159 |
158
|
iscld2 |
⊢ ( ( ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ∈ Top ∧ ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) → ( ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) ↔ ( ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ∖ ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) ) |
160 |
159
|
biimpar |
⊢ ( ( ( ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ∈ Top ∧ ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) ∧ ( ∪ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ∖ ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) → ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) ) |
161 |
15 20 157 160
|
syl21anc |
⊢ ( 𝜑 → ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) ) |
162 |
17
|
hausdiag |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ Haus ↔ ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ ( I ↾ ∪ ( 𝐽 qTop 𝐹 ) ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ×t ( 𝐽 qTop 𝐹 ) ) ) ) ) |
163 |
13 161 162
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ Haus ) |