Metamath Proof Explorer


Theorem fcoinvbr

Description: Binary relation for the equivalence relation from fcoinver . (Contributed by Thierry Arnoux, 3-Jan-2020)

Ref Expression
Hypothesis fcoinvbr.e = ( 𝐹𝐹 )
Assertion fcoinvbr ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( 𝑋 𝑌 ↔ ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 fcoinvbr.e = ( 𝐹𝐹 )
2 1 breqi ( 𝑋 𝑌𝑋 ( 𝐹𝐹 ) 𝑌 )
3 brcog ( ( 𝑋𝐴𝑌𝐴 ) → ( 𝑋 ( 𝐹𝐹 ) 𝑌 ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧𝑧 𝐹 𝑌 ) ) )
4 2 3 syl5bb ( ( 𝑋𝐴𝑌𝐴 ) → ( 𝑋 𝑌 ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧𝑧 𝐹 𝑌 ) ) )
5 4 3adant1 ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( 𝑋 𝑌 ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧𝑧 𝐹 𝑌 ) ) )
6 fvex ( 𝐹𝑋 ) ∈ V
7 6 eqvinc ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ↔ ∃ 𝑧 ( 𝑧 = ( 𝐹𝑋 ) ∧ 𝑧 = ( 𝐹𝑌 ) ) )
8 eqcom ( 𝑧 = ( 𝐹𝑋 ) ↔ ( 𝐹𝑋 ) = 𝑧 )
9 eqcom ( 𝑧 = ( 𝐹𝑌 ) ↔ ( 𝐹𝑌 ) = 𝑧 )
10 8 9 anbi12i ( ( 𝑧 = ( 𝐹𝑋 ) ∧ 𝑧 = ( 𝐹𝑌 ) ) ↔ ( ( 𝐹𝑋 ) = 𝑧 ∧ ( 𝐹𝑌 ) = 𝑧 ) )
11 10 exbii ( ∃ 𝑧 ( 𝑧 = ( 𝐹𝑋 ) ∧ 𝑧 = ( 𝐹𝑌 ) ) ↔ ∃ 𝑧 ( ( 𝐹𝑋 ) = 𝑧 ∧ ( 𝐹𝑌 ) = 𝑧 ) )
12 7 11 bitri ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ↔ ∃ 𝑧 ( ( 𝐹𝑋 ) = 𝑧 ∧ ( 𝐹𝑌 ) = 𝑧 ) )
13 fnbrfvb ( ( 𝐹 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑧𝑋 𝐹 𝑧 ) )
14 13 3adant3 ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑋 ) = 𝑧𝑋 𝐹 𝑧 ) )
15 fnbrfvb ( ( 𝐹 Fn 𝐴𝑌𝐴 ) → ( ( 𝐹𝑌 ) = 𝑧𝑌 𝐹 𝑧 ) )
16 15 3adant2 ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑌 ) = 𝑧𝑌 𝐹 𝑧 ) )
17 14 16 anbi12d ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( ( ( 𝐹𝑋 ) = 𝑧 ∧ ( 𝐹𝑌 ) = 𝑧 ) ↔ ( 𝑋 𝐹 𝑧𝑌 𝐹 𝑧 ) ) )
18 vex 𝑧 ∈ V
19 brcnvg ( ( 𝑧 ∈ V ∧ 𝑌𝐴 ) → ( 𝑧 𝐹 𝑌𝑌 𝐹 𝑧 ) )
20 18 19 mpan ( 𝑌𝐴 → ( 𝑧 𝐹 𝑌𝑌 𝐹 𝑧 ) )
21 20 3ad2ant3 ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( 𝑧 𝐹 𝑌𝑌 𝐹 𝑧 ) )
22 21 anbi2d ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( ( 𝑋 𝐹 𝑧𝑧 𝐹 𝑌 ) ↔ ( 𝑋 𝐹 𝑧𝑌 𝐹 𝑧 ) ) )
23 17 22 bitr4d ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( ( ( 𝐹𝑋 ) = 𝑧 ∧ ( 𝐹𝑌 ) = 𝑧 ) ↔ ( 𝑋 𝐹 𝑧𝑧 𝐹 𝑌 ) ) )
24 23 exbidv ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( ∃ 𝑧 ( ( 𝐹𝑋 ) = 𝑧 ∧ ( 𝐹𝑌 ) = 𝑧 ) ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧𝑧 𝐹 𝑌 ) ) )
25 12 24 syl5bb ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ↔ ∃ 𝑧 ( 𝑋 𝐹 𝑧𝑧 𝐹 𝑌 ) ) )
26 5 25 bitr4d ( ( 𝐹 Fn 𝐴𝑋𝐴𝑌𝐴 ) → ( 𝑋 𝑌 ↔ ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ) )