| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcoinvbr.e |
|- .~ = ( `' F o. F ) |
| 2 |
1
|
breqi |
|- ( X .~ Y <-> X ( `' F o. F ) Y ) |
| 3 |
|
brcog |
|- ( ( X e. A /\ Y e. A ) -> ( X ( `' F o. F ) Y <-> E. z ( X F z /\ z `' F Y ) ) ) |
| 4 |
2 3
|
bitrid |
|- ( ( X e. A /\ Y e. A ) -> ( X .~ Y <-> E. z ( X F z /\ z `' F Y ) ) ) |
| 5 |
4
|
3adant1 |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( X .~ Y <-> E. z ( X F z /\ z `' F Y ) ) ) |
| 6 |
|
fvex |
|- ( F ` X ) e. _V |
| 7 |
6
|
eqvinc |
|- ( ( F ` X ) = ( F ` Y ) <-> E. z ( z = ( F ` X ) /\ z = ( F ` Y ) ) ) |
| 8 |
|
eqcom |
|- ( z = ( F ` X ) <-> ( F ` X ) = z ) |
| 9 |
|
eqcom |
|- ( z = ( F ` Y ) <-> ( F ` Y ) = z ) |
| 10 |
8 9
|
anbi12i |
|- ( ( z = ( F ` X ) /\ z = ( F ` Y ) ) <-> ( ( F ` X ) = z /\ ( F ` Y ) = z ) ) |
| 11 |
10
|
exbii |
|- ( E. z ( z = ( F ` X ) /\ z = ( F ` Y ) ) <-> E. z ( ( F ` X ) = z /\ ( F ` Y ) = z ) ) |
| 12 |
7 11
|
bitri |
|- ( ( F ` X ) = ( F ` Y ) <-> E. z ( ( F ` X ) = z /\ ( F ` Y ) = z ) ) |
| 13 |
|
fnbrfvb |
|- ( ( F Fn A /\ X e. A ) -> ( ( F ` X ) = z <-> X F z ) ) |
| 14 |
13
|
3adant3 |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( ( F ` X ) = z <-> X F z ) ) |
| 15 |
|
fnbrfvb |
|- ( ( F Fn A /\ Y e. A ) -> ( ( F ` Y ) = z <-> Y F z ) ) |
| 16 |
15
|
3adant2 |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( ( F ` Y ) = z <-> Y F z ) ) |
| 17 |
14 16
|
anbi12d |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( ( ( F ` X ) = z /\ ( F ` Y ) = z ) <-> ( X F z /\ Y F z ) ) ) |
| 18 |
|
vex |
|- z e. _V |
| 19 |
|
brcnvg |
|- ( ( z e. _V /\ Y e. A ) -> ( z `' F Y <-> Y F z ) ) |
| 20 |
18 19
|
mpan |
|- ( Y e. A -> ( z `' F Y <-> Y F z ) ) |
| 21 |
20
|
3ad2ant3 |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( z `' F Y <-> Y F z ) ) |
| 22 |
21
|
anbi2d |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( ( X F z /\ z `' F Y ) <-> ( X F z /\ Y F z ) ) ) |
| 23 |
17 22
|
bitr4d |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( ( ( F ` X ) = z /\ ( F ` Y ) = z ) <-> ( X F z /\ z `' F Y ) ) ) |
| 24 |
23
|
exbidv |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( E. z ( ( F ` X ) = z /\ ( F ` Y ) = z ) <-> E. z ( X F z /\ z `' F Y ) ) ) |
| 25 |
12 24
|
bitrid |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( ( F ` X ) = ( F ` Y ) <-> E. z ( X F z /\ z `' F Y ) ) ) |
| 26 |
5 25
|
bitr4d |
|- ( ( F Fn A /\ X e. A /\ Y e. A ) -> ( X .~ Y <-> ( F ` X ) = ( F ` Y ) ) ) |