| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txomap.f | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑍 ) | 
						
							| 2 |  | txomap.g | ⊢ ( 𝜑  →  𝐺 : 𝑌 ⟶ 𝑇 ) | 
						
							| 3 |  | txomap.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 4 |  | txomap.k | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 5 |  | txomap.l | ⊢ ( 𝜑  →  𝐿  ∈  ( TopOn ‘ 𝑍 ) ) | 
						
							| 6 |  | txomap.m | ⊢ ( 𝜑  →  𝑀  ∈  ( TopOn ‘ 𝑇 ) ) | 
						
							| 7 |  | txomap.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( 𝐹  “  𝑥 )  ∈  𝐿 ) | 
						
							| 8 |  | txomap.2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐾 )  →  ( 𝐺  “  𝑦 )  ∈  𝑀 ) | 
						
							| 9 |  | txomap.a | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐽  ×t  𝐾 ) ) | 
						
							| 10 |  | txomap.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉 ) | 
						
							| 11 |  | simp-6l | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝜑 ) | 
						
							| 12 |  | simpllr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝑥  ∈  𝐽 ) | 
						
							| 13 | 11 12 7 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ( 𝐹  “  𝑥 )  ∈  𝐿 ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝑦  ∈  𝐾 ) | 
						
							| 15 | 11 14 8 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ( 𝐺  “  𝑦 )  ∈  𝑀 ) | 
						
							| 16 |  | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉  ∈  V | 
						
							| 17 | 10 16 | fnmpoi | ⊢ 𝐻  Fn  ( 𝑋  ×  𝑌 ) | 
						
							| 18 | 3 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 19 |  | toponss | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑥  ∈  𝐽 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 20 | 18 12 19 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝑥  ⊆  𝑋 ) | 
						
							| 21 | 4 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 22 |  | toponss | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝑦  ∈  𝐾 )  →  𝑦  ⊆  𝑌 ) | 
						
							| 23 | 21 14 22 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝑦  ⊆  𝑌 ) | 
						
							| 24 |  | xpss12 | ⊢ ( ( 𝑥  ⊆  𝑋  ∧  𝑦  ⊆  𝑌 )  →  ( 𝑥  ×  𝑦 )  ⊆  ( 𝑋  ×  𝑌 ) ) | 
						
							| 25 | 20 23 24 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ( 𝑥  ×  𝑦 )  ⊆  ( 𝑋  ×  𝑌 ) ) | 
						
							| 26 |  | simprl | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝑧  ∈  ( 𝑥  ×  𝑦 ) ) | 
						
							| 27 |  | fnfvima | ⊢ ( ( 𝐻  Fn  ( 𝑋  ×  𝑌 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( 𝑋  ×  𝑌 )  ∧  𝑧  ∈  ( 𝑥  ×  𝑦 ) )  →  ( 𝐻 ‘ 𝑧 )  ∈  ( 𝐻  “  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 28 | 17 25 26 27 | mp3an2i | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ( 𝐻 ‘ 𝑧 )  ∈  ( 𝐻  “  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 29 |  | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 30 |  | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑍  →  𝐹  Fn  𝑋 ) | 
						
							| 31 | 11 1 30 | 3syl | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝐹  Fn  𝑋 ) | 
						
							| 32 |  | ffn | ⊢ ( 𝐺 : 𝑌 ⟶ 𝑇  →  𝐺  Fn  𝑌 ) | 
						
							| 33 | 11 2 32 | 3syl | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝐺  Fn  𝑌 ) | 
						
							| 34 | 10 31 33 20 23 | fimaproj | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ( 𝐻  “  ( 𝑥  ×  𝑦 ) )  =  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) ) ) | 
						
							| 35 | 28 29 34 | 3eltr3d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  𝑐  ∈  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) ) ) | 
						
							| 36 |  | imass2 | ⊢ ( ( 𝑥  ×  𝑦 )  ⊆  𝐴  →  ( 𝐻  “  ( 𝑥  ×  𝑦 ) )  ⊆  ( 𝐻  “  𝐴 ) ) | 
						
							| 37 | 36 | ad2antll | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ( 𝐻  “  ( 𝑥  ×  𝑦 ) )  ⊆  ( 𝐻  “  𝐴 ) ) | 
						
							| 38 | 34 37 | eqsstrrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) )  ⊆  ( 𝐻  “  𝐴 ) ) | 
						
							| 39 |  | xpeq1 | ⊢ ( 𝑎  =  ( 𝐹  “  𝑥 )  →  ( 𝑎  ×  𝑏 )  =  ( ( 𝐹  “  𝑥 )  ×  𝑏 ) ) | 
						
							| 40 | 39 | eleq2d | ⊢ ( 𝑎  =  ( 𝐹  “  𝑥 )  →  ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ↔  𝑐  ∈  ( ( 𝐹  “  𝑥 )  ×  𝑏 ) ) ) | 
						
							| 41 | 39 | sseq1d | ⊢ ( 𝑎  =  ( 𝐹  “  𝑥 )  →  ( ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 )  ↔  ( ( 𝐹  “  𝑥 )  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) | 
						
							| 42 | 40 41 | anbi12d | ⊢ ( 𝑎  =  ( 𝐹  “  𝑥 )  →  ( ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) )  ↔  ( 𝑐  ∈  ( ( 𝐹  “  𝑥 )  ×  𝑏 )  ∧  ( ( 𝐹  “  𝑥 )  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) ) | 
						
							| 43 |  | xpeq2 | ⊢ ( 𝑏  =  ( 𝐺  “  𝑦 )  →  ( ( 𝐹  “  𝑥 )  ×  𝑏 )  =  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) ) ) | 
						
							| 44 | 43 | eleq2d | ⊢ ( 𝑏  =  ( 𝐺  “  𝑦 )  →  ( 𝑐  ∈  ( ( 𝐹  “  𝑥 )  ×  𝑏 )  ↔  𝑐  ∈  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) ) ) ) | 
						
							| 45 | 43 | sseq1d | ⊢ ( 𝑏  =  ( 𝐺  “  𝑦 )  →  ( ( ( 𝐹  “  𝑥 )  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 )  ↔  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) )  ⊆  ( 𝐻  “  𝐴 ) ) ) | 
						
							| 46 | 44 45 | anbi12d | ⊢ ( 𝑏  =  ( 𝐺  “  𝑦 )  →  ( ( 𝑐  ∈  ( ( 𝐹  “  𝑥 )  ×  𝑏 )  ∧  ( ( 𝐹  “  𝑥 )  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) )  ↔  ( 𝑐  ∈  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) )  ∧  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) )  ⊆  ( 𝐻  “  𝐴 ) ) ) ) | 
						
							| 47 | 42 46 | rspc2ev | ⊢ ( ( ( 𝐹  “  𝑥 )  ∈  𝐿  ∧  ( 𝐺  “  𝑦 )  ∈  𝑀  ∧  ( 𝑐  ∈  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) )  ∧  ( ( 𝐹  “  𝑥 )  ×  ( 𝐺  “  𝑦 ) )  ⊆  ( 𝐻  “  𝐴 ) ) )  →  ∃ 𝑎  ∈  𝐿 ∃ 𝑏  ∈  𝑀 ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) | 
						
							| 48 | 13 15 35 38 47 | syl112anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  ∧  𝑥  ∈  𝐽 )  ∧  𝑦  ∈  𝐾 )  ∧  ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) )  →  ∃ 𝑎  ∈  𝐿 ∃ 𝑏  ∈  𝑀 ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) | 
						
							| 49 |  | eltx | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐴  ∈  ( 𝐽  ×t  𝐾 )  ↔  ∀ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐽 ∃ 𝑦  ∈  𝐾 ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) ) ) | 
						
							| 50 | 3 4 49 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐽  ×t  𝐾 )  ↔  ∀ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐽 ∃ 𝑦  ∈  𝐾 ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) ) ) | 
						
							| 51 | 9 50 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐴 ∃ 𝑥  ∈  𝐽 ∃ 𝑦  ∈  𝐾 ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) ) | 
						
							| 52 | 51 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ∃ 𝑥  ∈  𝐽 ∃ 𝑦  ∈  𝐾 ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) ) | 
						
							| 53 | 52 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  →  ∃ 𝑥  ∈  𝐽 ∃ 𝑦  ∈  𝐾 ( 𝑧  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  𝐴 ) ) | 
						
							| 54 | 48 53 | r19.29vva | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐻 ‘ 𝑧 )  =  𝑐 )  →  ∃ 𝑎  ∈  𝐿 ∃ 𝑏  ∈  𝑀 ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) | 
						
							| 55 | 10 | mpofun | ⊢ Fun  𝐻 | 
						
							| 56 |  | fvelima | ⊢ ( ( Fun  𝐻  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  →  ∃ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 57 | 55 56 | mpan | ⊢ ( 𝑐  ∈  ( 𝐻  “  𝐴 )  →  ∃ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  →  ∃ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  𝑐 ) | 
						
							| 59 | 54 58 | r19.29a | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐻  “  𝐴 ) )  →  ∃ 𝑎  ∈  𝐿 ∃ 𝑏  ∈  𝑀 ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) | 
						
							| 60 | 59 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  ( 𝐻  “  𝐴 ) ∃ 𝑎  ∈  𝐿 ∃ 𝑏  ∈  𝑀 ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) | 
						
							| 61 |  | eltx | ⊢ ( ( 𝐿  ∈  ( TopOn ‘ 𝑍 )  ∧  𝑀  ∈  ( TopOn ‘ 𝑇 ) )  →  ( ( 𝐻  “  𝐴 )  ∈  ( 𝐿  ×t  𝑀 )  ↔  ∀ 𝑐  ∈  ( 𝐻  “  𝐴 ) ∃ 𝑎  ∈  𝐿 ∃ 𝑏  ∈  𝑀 ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) ) | 
						
							| 62 | 5 6 61 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐻  “  𝐴 )  ∈  ( 𝐿  ×t  𝑀 )  ↔  ∀ 𝑐  ∈  ( 𝐻  “  𝐴 ) ∃ 𝑎  ∈  𝐿 ∃ 𝑏  ∈  𝑀 ( 𝑐  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( 𝐻  “  𝐴 ) ) ) ) | 
						
							| 63 | 60 62 | mpbird | ⊢ ( 𝜑  →  ( 𝐻  “  𝐴 )  ∈  ( 𝐿  ×t  𝑀 ) ) |