| Step |
Hyp |
Ref |
Expression |
| 1 |
|
circtopn.i |
⊢ 𝐼 = ( 0 [,] ( 2 · π ) ) |
| 2 |
|
circtopn.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 3 |
|
circtopn.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) |
| 4 |
|
circtopn.c |
⊢ 𝐶 = ( ◡ abs “ { 1 } ) |
| 5 |
|
pwuni |
⊢ ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 ∪ ( 𝐽 qTop 𝐹 ) |
| 6 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 7 |
2 6
|
eqeltri |
⊢ 𝐽 ∈ Top |
| 8 |
3 4
|
efifo |
⊢ 𝐹 : ℝ –onto→ 𝐶 |
| 9 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 10 |
2
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
| 11 |
9 10
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
| 12 |
11
|
qtopuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : ℝ –onto→ 𝐶 ) → 𝐶 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 13 |
7 8 12
|
mp2an |
⊢ 𝐶 = ∪ ( 𝐽 qTop 𝐹 ) |
| 14 |
13
|
pweqi |
⊢ 𝒫 𝐶 = 𝒫 ∪ ( 𝐽 qTop 𝐹 ) |
| 15 |
5 14
|
sseqtrri |
⊢ ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝐶 |
| 16 |
|
eqidd |
⊢ ( ⊤ → ( 𝐹 “s ℝfld ) = ( 𝐹 “s ℝfld ) ) |
| 17 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 18 |
17
|
a1i |
⊢ ( ⊤ → ℝ = ( Base ‘ ℝfld ) ) |
| 19 |
8
|
a1i |
⊢ ( ⊤ → 𝐹 : ℝ –onto→ 𝐶 ) |
| 20 |
|
recms |
⊢ ℝfld ∈ CMetSp |
| 21 |
20
|
a1i |
⊢ ( ⊤ → ℝfld ∈ CMetSp ) |
| 22 |
16 18 19 21
|
imasbas |
⊢ ( ⊤ → 𝐶 = ( Base ‘ ( 𝐹 “s ℝfld ) ) ) |
| 23 |
22
|
mptru |
⊢ 𝐶 = ( Base ‘ ( 𝐹 “s ℝfld ) ) |
| 24 |
|
retopn |
⊢ ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld ) |
| 25 |
2 24
|
eqtri |
⊢ 𝐽 = ( TopOpen ‘ ℝfld ) |
| 26 |
|
eqid |
⊢ ( TopSet ‘ ( 𝐹 “s ℝfld ) ) = ( TopSet ‘ ( 𝐹 “s ℝfld ) ) |
| 27 |
16 18 19 21 25 26
|
imastset |
⊢ ( ⊤ → ( TopSet ‘ ( 𝐹 “s ℝfld ) ) = ( 𝐽 qTop 𝐹 ) ) |
| 28 |
27
|
mptru |
⊢ ( TopSet ‘ ( 𝐹 “s ℝfld ) ) = ( 𝐽 qTop 𝐹 ) |
| 29 |
28
|
eqcomi |
⊢ ( 𝐽 qTop 𝐹 ) = ( TopSet ‘ ( 𝐹 “s ℝfld ) ) |
| 30 |
23 29
|
topnid |
⊢ ( ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝐶 → ( 𝐽 qTop 𝐹 ) = ( TopOpen ‘ ( 𝐹 “s ℝfld ) ) ) |
| 31 |
15 30
|
ax-mp |
⊢ ( 𝐽 qTop 𝐹 ) = ( TopOpen ‘ ( 𝐹 “s ℝfld ) ) |