| Step | Hyp | Ref | Expression | 
						
							| 1 |  | circtopn.i | ⊢ 𝐼  =  ( 0 [,] ( 2  ·  π ) ) | 
						
							| 2 |  | circtopn.j | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 3 |  | circtopn.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) ) | 
						
							| 4 |  | circtopn.c | ⊢ 𝐶  =  ( ◡ abs  “  { 1 } ) | 
						
							| 5 |  | pwuni | ⊢ ( 𝐽  qTop  𝐹 )  ⊆  𝒫  ∪  ( 𝐽  qTop  𝐹 ) | 
						
							| 6 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 7 | 2 6 | eqeltri | ⊢ 𝐽  ∈  Top | 
						
							| 8 | 3 4 | efifo | ⊢ 𝐹 : ℝ –onto→ 𝐶 | 
						
							| 9 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 10 | 2 | unieqi | ⊢ ∪  𝐽  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 11 | 9 10 | eqtr4i | ⊢ ℝ  =  ∪  𝐽 | 
						
							| 12 | 11 | qtopuni | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐹 : ℝ –onto→ 𝐶 )  →  𝐶  =  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 13 | 7 8 12 | mp2an | ⊢ 𝐶  =  ∪  ( 𝐽  qTop  𝐹 ) | 
						
							| 14 | 13 | pweqi | ⊢ 𝒫  𝐶  =  𝒫  ∪  ( 𝐽  qTop  𝐹 ) | 
						
							| 15 | 5 14 | sseqtrri | ⊢ ( 𝐽  qTop  𝐹 )  ⊆  𝒫  𝐶 | 
						
							| 16 |  | eqidd | ⊢ ( ⊤  →  ( 𝐹  “s  ℝfld )  =  ( 𝐹  “s  ℝfld ) ) | 
						
							| 17 |  | rebase | ⊢ ℝ  =  ( Base ‘ ℝfld ) | 
						
							| 18 | 17 | a1i | ⊢ ( ⊤  →  ℝ  =  ( Base ‘ ℝfld ) ) | 
						
							| 19 | 8 | a1i | ⊢ ( ⊤  →  𝐹 : ℝ –onto→ 𝐶 ) | 
						
							| 20 |  | recms | ⊢ ℝfld  ∈  CMetSp | 
						
							| 21 | 20 | a1i | ⊢ ( ⊤  →  ℝfld  ∈  CMetSp ) | 
						
							| 22 | 16 18 19 21 | imasbas | ⊢ ( ⊤  →  𝐶  =  ( Base ‘ ( 𝐹  “s  ℝfld ) ) ) | 
						
							| 23 | 22 | mptru | ⊢ 𝐶  =  ( Base ‘ ( 𝐹  “s  ℝfld ) ) | 
						
							| 24 |  | retopn | ⊢ ( topGen ‘ ran  (,) )  =  ( TopOpen ‘ ℝfld ) | 
						
							| 25 | 2 24 | eqtri | ⊢ 𝐽  =  ( TopOpen ‘ ℝfld ) | 
						
							| 26 |  | eqid | ⊢ ( TopSet ‘ ( 𝐹  “s  ℝfld ) )  =  ( TopSet ‘ ( 𝐹  “s  ℝfld ) ) | 
						
							| 27 | 16 18 19 21 25 26 | imastset | ⊢ ( ⊤  →  ( TopSet ‘ ( 𝐹  “s  ℝfld ) )  =  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 28 | 27 | mptru | ⊢ ( TopSet ‘ ( 𝐹  “s  ℝfld ) )  =  ( 𝐽  qTop  𝐹 ) | 
						
							| 29 | 28 | eqcomi | ⊢ ( 𝐽  qTop  𝐹 )  =  ( TopSet ‘ ( 𝐹  “s  ℝfld ) ) | 
						
							| 30 | 23 29 | topnid | ⊢ ( ( 𝐽  qTop  𝐹 )  ⊆  𝒫  𝐶  →  ( 𝐽  qTop  𝐹 )  =  ( TopOpen ‘ ( 𝐹  “s  ℝfld ) ) ) | 
						
							| 31 | 15 30 | ax-mp | ⊢ ( 𝐽  qTop  𝐹 )  =  ( TopOpen ‘ ( 𝐹  “s  ℝfld ) ) |