Metamath Proof Explorer


Theorem circtopn

Description: The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020)

Ref Expression
Hypotheses circtopn.i 𝐼 = ( 0 [,] ( 2 · π ) )
circtopn.j 𝐽 = ( topGen ‘ ran (,) )
circtopn.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) )
circtopn.c 𝐶 = ( abs “ { 1 } )
Assertion circtopn ( 𝐽 qTop 𝐹 ) = ( TopOpen ‘ ( 𝐹sfld ) )

Proof

Step Hyp Ref Expression
1 circtopn.i 𝐼 = ( 0 [,] ( 2 · π ) )
2 circtopn.j 𝐽 = ( topGen ‘ ran (,) )
3 circtopn.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) )
4 circtopn.c 𝐶 = ( abs “ { 1 } )
5 pwuni ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 ( 𝐽 qTop 𝐹 )
6 retop ( topGen ‘ ran (,) ) ∈ Top
7 2 6 eqeltri 𝐽 ∈ Top
8 3 4 efifo 𝐹 : ℝ –onto𝐶
9 uniretop ℝ = ( topGen ‘ ran (,) )
10 2 unieqi 𝐽 = ( topGen ‘ ran (,) )
11 9 10 eqtr4i ℝ = 𝐽
12 11 qtopuni ( ( 𝐽 ∈ Top ∧ 𝐹 : ℝ –onto𝐶 ) → 𝐶 = ( 𝐽 qTop 𝐹 ) )
13 7 8 12 mp2an 𝐶 = ( 𝐽 qTop 𝐹 )
14 13 pweqi 𝒫 𝐶 = 𝒫 ( 𝐽 qTop 𝐹 )
15 5 14 sseqtrri ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝐶
16 eqidd ( ⊤ → ( 𝐹sfld ) = ( 𝐹sfld ) )
17 rebase ℝ = ( Base ‘ ℝfld )
18 17 a1i ( ⊤ → ℝ = ( Base ‘ ℝfld ) )
19 8 a1i ( ⊤ → 𝐹 : ℝ –onto𝐶 )
20 recms fld ∈ CMetSp
21 20 a1i ( ⊤ → ℝfld ∈ CMetSp )
22 16 18 19 21 imasbas ( ⊤ → 𝐶 = ( Base ‘ ( 𝐹sfld ) ) )
23 22 mptru 𝐶 = ( Base ‘ ( 𝐹sfld ) )
24 retopn ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld )
25 2 24 eqtri 𝐽 = ( TopOpen ‘ ℝfld )
26 eqid ( TopSet ‘ ( 𝐹sfld ) ) = ( TopSet ‘ ( 𝐹sfld ) )
27 16 18 19 21 25 26 imastset ( ⊤ → ( TopSet ‘ ( 𝐹sfld ) ) = ( 𝐽 qTop 𝐹 ) )
28 27 mptru ( TopSet ‘ ( 𝐹sfld ) ) = ( 𝐽 qTop 𝐹 )
29 28 eqcomi ( 𝐽 qTop 𝐹 ) = ( TopSet ‘ ( 𝐹sfld ) )
30 23 29 topnid ( ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝐶 → ( 𝐽 qTop 𝐹 ) = ( TopOpen ‘ ( 𝐹sfld ) ) )
31 15 30 ax-mp ( 𝐽 qTop 𝐹 ) = ( TopOpen ‘ ( 𝐹sfld ) )