Step |
Hyp |
Ref |
Expression |
1 |
|
circtopn.i |
⊢ 𝐼 = ( 0 [,] ( 2 · π ) ) |
2 |
|
circtopn.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
3 |
|
circtopn.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) |
4 |
|
circtopn.c |
⊢ 𝐶 = ( ◡ abs “ { 1 } ) |
5 |
|
pwuni |
⊢ ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 ∪ ( 𝐽 qTop 𝐹 ) |
6 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
7 |
2 6
|
eqeltri |
⊢ 𝐽 ∈ Top |
8 |
3 4
|
efifo |
⊢ 𝐹 : ℝ –onto→ 𝐶 |
9 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
10 |
2
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
11 |
9 10
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
12 |
11
|
qtopuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : ℝ –onto→ 𝐶 ) → 𝐶 = ∪ ( 𝐽 qTop 𝐹 ) ) |
13 |
7 8 12
|
mp2an |
⊢ 𝐶 = ∪ ( 𝐽 qTop 𝐹 ) |
14 |
13
|
pweqi |
⊢ 𝒫 𝐶 = 𝒫 ∪ ( 𝐽 qTop 𝐹 ) |
15 |
5 14
|
sseqtrri |
⊢ ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝐶 |
16 |
|
eqidd |
⊢ ( ⊤ → ( 𝐹 “s ℝfld ) = ( 𝐹 “s ℝfld ) ) |
17 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
18 |
17
|
a1i |
⊢ ( ⊤ → ℝ = ( Base ‘ ℝfld ) ) |
19 |
8
|
a1i |
⊢ ( ⊤ → 𝐹 : ℝ –onto→ 𝐶 ) |
20 |
|
recms |
⊢ ℝfld ∈ CMetSp |
21 |
20
|
a1i |
⊢ ( ⊤ → ℝfld ∈ CMetSp ) |
22 |
16 18 19 21
|
imasbas |
⊢ ( ⊤ → 𝐶 = ( Base ‘ ( 𝐹 “s ℝfld ) ) ) |
23 |
22
|
mptru |
⊢ 𝐶 = ( Base ‘ ( 𝐹 “s ℝfld ) ) |
24 |
|
retopn |
⊢ ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld ) |
25 |
2 24
|
eqtri |
⊢ 𝐽 = ( TopOpen ‘ ℝfld ) |
26 |
|
eqid |
⊢ ( TopSet ‘ ( 𝐹 “s ℝfld ) ) = ( TopSet ‘ ( 𝐹 “s ℝfld ) ) |
27 |
16 18 19 21 25 26
|
imastset |
⊢ ( ⊤ → ( TopSet ‘ ( 𝐹 “s ℝfld ) ) = ( 𝐽 qTop 𝐹 ) ) |
28 |
27
|
mptru |
⊢ ( TopSet ‘ ( 𝐹 “s ℝfld ) ) = ( 𝐽 qTop 𝐹 ) |
29 |
28
|
eqcomi |
⊢ ( 𝐽 qTop 𝐹 ) = ( TopSet ‘ ( 𝐹 “s ℝfld ) ) |
30 |
23 29
|
topnid |
⊢ ( ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝐶 → ( 𝐽 qTop 𝐹 ) = ( TopOpen ‘ ( 𝐹 “s ℝfld ) ) ) |
31 |
15 30
|
ax-mp |
⊢ ( 𝐽 qTop 𝐹 ) = ( TopOpen ‘ ( 𝐹 “s ℝfld ) ) |