| Step | Hyp | Ref | Expression | 
						
							| 1 |  | circtopn.i |  |-  I = ( 0 [,] ( 2 x. _pi ) ) | 
						
							| 2 |  | circtopn.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 3 |  | circtopn.f |  |-  F = ( x e. RR |-> ( exp ` ( _i x. x ) ) ) | 
						
							| 4 |  | circtopn.c |  |-  C = ( `' abs " { 1 } ) | 
						
							| 5 |  | pwuni |  |-  ( J qTop F ) C_ ~P U. ( J qTop F ) | 
						
							| 6 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 7 | 2 6 | eqeltri |  |-  J e. Top | 
						
							| 8 | 3 4 | efifo |  |-  F : RR -onto-> C | 
						
							| 9 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 10 | 2 | unieqi |  |-  U. J = U. ( topGen ` ran (,) ) | 
						
							| 11 | 9 10 | eqtr4i |  |-  RR = U. J | 
						
							| 12 | 11 | qtopuni |  |-  ( ( J e. Top /\ F : RR -onto-> C ) -> C = U. ( J qTop F ) ) | 
						
							| 13 | 7 8 12 | mp2an |  |-  C = U. ( J qTop F ) | 
						
							| 14 | 13 | pweqi |  |-  ~P C = ~P U. ( J qTop F ) | 
						
							| 15 | 5 14 | sseqtrri |  |-  ( J qTop F ) C_ ~P C | 
						
							| 16 |  | eqidd |  |-  ( T. -> ( F "s RRfld ) = ( F "s RRfld ) ) | 
						
							| 17 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 18 | 17 | a1i |  |-  ( T. -> RR = ( Base ` RRfld ) ) | 
						
							| 19 | 8 | a1i |  |-  ( T. -> F : RR -onto-> C ) | 
						
							| 20 |  | recms |  |-  RRfld e. CMetSp | 
						
							| 21 | 20 | a1i |  |-  ( T. -> RRfld e. CMetSp ) | 
						
							| 22 | 16 18 19 21 | imasbas |  |-  ( T. -> C = ( Base ` ( F "s RRfld ) ) ) | 
						
							| 23 | 22 | mptru |  |-  C = ( Base ` ( F "s RRfld ) ) | 
						
							| 24 |  | retopn |  |-  ( topGen ` ran (,) ) = ( TopOpen ` RRfld ) | 
						
							| 25 | 2 24 | eqtri |  |-  J = ( TopOpen ` RRfld ) | 
						
							| 26 |  | eqid |  |-  ( TopSet ` ( F "s RRfld ) ) = ( TopSet ` ( F "s RRfld ) ) | 
						
							| 27 | 16 18 19 21 25 26 | imastset |  |-  ( T. -> ( TopSet ` ( F "s RRfld ) ) = ( J qTop F ) ) | 
						
							| 28 | 27 | mptru |  |-  ( TopSet ` ( F "s RRfld ) ) = ( J qTop F ) | 
						
							| 29 | 28 | eqcomi |  |-  ( J qTop F ) = ( TopSet ` ( F "s RRfld ) ) | 
						
							| 30 | 23 29 | topnid |  |-  ( ( J qTop F ) C_ ~P C -> ( J qTop F ) = ( TopOpen ` ( F "s RRfld ) ) ) | 
						
							| 31 | 15 30 | ax-mp |  |-  ( J qTop F ) = ( TopOpen ` ( F "s RRfld ) ) |