Step |
Hyp |
Ref |
Expression |
1 |
|
circtopn.i |
|- I = ( 0 [,] ( 2 x. _pi ) ) |
2 |
|
circtopn.j |
|- J = ( topGen ` ran (,) ) |
3 |
|
circtopn.f |
|- F = ( x e. RR |-> ( exp ` ( _i x. x ) ) ) |
4 |
|
circtopn.c |
|- C = ( `' abs " { 1 } ) |
5 |
|
pwuni |
|- ( J qTop F ) C_ ~P U. ( J qTop F ) |
6 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
7 |
2 6
|
eqeltri |
|- J e. Top |
8 |
3 4
|
efifo |
|- F : RR -onto-> C |
9 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
10 |
2
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
11 |
9 10
|
eqtr4i |
|- RR = U. J |
12 |
11
|
qtopuni |
|- ( ( J e. Top /\ F : RR -onto-> C ) -> C = U. ( J qTop F ) ) |
13 |
7 8 12
|
mp2an |
|- C = U. ( J qTop F ) |
14 |
13
|
pweqi |
|- ~P C = ~P U. ( J qTop F ) |
15 |
5 14
|
sseqtrri |
|- ( J qTop F ) C_ ~P C |
16 |
|
eqidd |
|- ( T. -> ( F "s RRfld ) = ( F "s RRfld ) ) |
17 |
|
rebase |
|- RR = ( Base ` RRfld ) |
18 |
17
|
a1i |
|- ( T. -> RR = ( Base ` RRfld ) ) |
19 |
8
|
a1i |
|- ( T. -> F : RR -onto-> C ) |
20 |
|
recms |
|- RRfld e. CMetSp |
21 |
20
|
a1i |
|- ( T. -> RRfld e. CMetSp ) |
22 |
16 18 19 21
|
imasbas |
|- ( T. -> C = ( Base ` ( F "s RRfld ) ) ) |
23 |
22
|
mptru |
|- C = ( Base ` ( F "s RRfld ) ) |
24 |
|
retopn |
|- ( topGen ` ran (,) ) = ( TopOpen ` RRfld ) |
25 |
2 24
|
eqtri |
|- J = ( TopOpen ` RRfld ) |
26 |
|
eqid |
|- ( TopSet ` ( F "s RRfld ) ) = ( TopSet ` ( F "s RRfld ) ) |
27 |
16 18 19 21 25 26
|
imastset |
|- ( T. -> ( TopSet ` ( F "s RRfld ) ) = ( J qTop F ) ) |
28 |
27
|
mptru |
|- ( TopSet ` ( F "s RRfld ) ) = ( J qTop F ) |
29 |
28
|
eqcomi |
|- ( J qTop F ) = ( TopSet ` ( F "s RRfld ) ) |
30 |
23 29
|
topnid |
|- ( ( J qTop F ) C_ ~P C -> ( J qTop F ) = ( TopOpen ` ( F "s RRfld ) ) ) |
31 |
15 30
|
ax-mp |
|- ( J qTop F ) = ( TopOpen ` ( F "s RRfld ) ) |