Metamath Proof Explorer


Theorem circtopn

Description: The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020)

Ref Expression
Hypotheses circtopn.i
|- I = ( 0 [,] ( 2 x. _pi ) )
circtopn.j
|- J = ( topGen ` ran (,) )
circtopn.f
|- F = ( x e. RR |-> ( exp ` ( _i x. x ) ) )
circtopn.c
|- C = ( `' abs " { 1 } )
Assertion circtopn
|- ( J qTop F ) = ( TopOpen ` ( F "s RRfld ) )

Proof

Step Hyp Ref Expression
1 circtopn.i
 |-  I = ( 0 [,] ( 2 x. _pi ) )
2 circtopn.j
 |-  J = ( topGen ` ran (,) )
3 circtopn.f
 |-  F = ( x e. RR |-> ( exp ` ( _i x. x ) ) )
4 circtopn.c
 |-  C = ( `' abs " { 1 } )
5 pwuni
 |-  ( J qTop F ) C_ ~P U. ( J qTop F )
6 retop
 |-  ( topGen ` ran (,) ) e. Top
7 2 6 eqeltri
 |-  J e. Top
8 3 4 efifo
 |-  F : RR -onto-> C
9 uniretop
 |-  RR = U. ( topGen ` ran (,) )
10 2 unieqi
 |-  U. J = U. ( topGen ` ran (,) )
11 9 10 eqtr4i
 |-  RR = U. J
12 11 qtopuni
 |-  ( ( J e. Top /\ F : RR -onto-> C ) -> C = U. ( J qTop F ) )
13 7 8 12 mp2an
 |-  C = U. ( J qTop F )
14 13 pweqi
 |-  ~P C = ~P U. ( J qTop F )
15 5 14 sseqtrri
 |-  ( J qTop F ) C_ ~P C
16 eqidd
 |-  ( T. -> ( F "s RRfld ) = ( F "s RRfld ) )
17 rebase
 |-  RR = ( Base ` RRfld )
18 17 a1i
 |-  ( T. -> RR = ( Base ` RRfld ) )
19 8 a1i
 |-  ( T. -> F : RR -onto-> C )
20 recms
 |-  RRfld e. CMetSp
21 20 a1i
 |-  ( T. -> RRfld e. CMetSp )
22 16 18 19 21 imasbas
 |-  ( T. -> C = ( Base ` ( F "s RRfld ) ) )
23 22 mptru
 |-  C = ( Base ` ( F "s RRfld ) )
24 retopn
 |-  ( topGen ` ran (,) ) = ( TopOpen ` RRfld )
25 2 24 eqtri
 |-  J = ( TopOpen ` RRfld )
26 eqid
 |-  ( TopSet ` ( F "s RRfld ) ) = ( TopSet ` ( F "s RRfld ) )
27 16 18 19 21 25 26 imastset
 |-  ( T. -> ( TopSet ` ( F "s RRfld ) ) = ( J qTop F ) )
28 27 mptru
 |-  ( TopSet ` ( F "s RRfld ) ) = ( J qTop F )
29 28 eqcomi
 |-  ( J qTop F ) = ( TopSet ` ( F "s RRfld ) )
30 23 29 topnid
 |-  ( ( J qTop F ) C_ ~P C -> ( J qTop F ) = ( TopOpen ` ( F "s RRfld ) ) )
31 15 30 ax-mp
 |-  ( J qTop F ) = ( TopOpen ` ( F "s RRfld ) )