Metamath Proof Explorer


Theorem ralxfr2d

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014)

Ref Expression
Hypotheses ralxfr2d.1 ( ( 𝜑𝑦𝐶 ) → 𝐴𝑉 )
ralxfr2d.2 ( 𝜑 → ( 𝑥𝐵 ↔ ∃ 𝑦𝐶 𝑥 = 𝐴 ) )
ralxfr2d.3 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion ralxfr2d ( 𝜑 → ( ∀ 𝑥𝐵 𝜓 ↔ ∀ 𝑦𝐶 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralxfr2d.1 ( ( 𝜑𝑦𝐶 ) → 𝐴𝑉 )
2 ralxfr2d.2 ( 𝜑 → ( 𝑥𝐵 ↔ ∃ 𝑦𝐶 𝑥 = 𝐴 ) )
3 ralxfr2d.3 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
4 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
5 1 4 syl ( ( 𝜑𝑦𝐶 ) → ∃ 𝑥 𝑥 = 𝐴 )
6 2 biimprd ( 𝜑 → ( ∃ 𝑦𝐶 𝑥 = 𝐴𝑥𝐵 ) )
7 r19.23v ( ∀ 𝑦𝐶 ( 𝑥 = 𝐴𝑥𝐵 ) ↔ ( ∃ 𝑦𝐶 𝑥 = 𝐴𝑥𝐵 ) )
8 6 7 sylibr ( 𝜑 → ∀ 𝑦𝐶 ( 𝑥 = 𝐴𝑥𝐵 ) )
9 8 r19.21bi ( ( 𝜑𝑦𝐶 ) → ( 𝑥 = 𝐴𝑥𝐵 ) )
10 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
11 9 10 mpbidi ( ( 𝜑𝑦𝐶 ) → ( 𝑥 = 𝐴𝐴𝐵 ) )
12 11 exlimdv ( ( 𝜑𝑦𝐶 ) → ( ∃ 𝑥 𝑥 = 𝐴𝐴𝐵 ) )
13 5 12 mpd ( ( 𝜑𝑦𝐶 ) → 𝐴𝐵 )
14 2 biimpa ( ( 𝜑𝑥𝐵 ) → ∃ 𝑦𝐶 𝑥 = 𝐴 )
15 13 14 3 ralxfrd ( 𝜑 → ( ∀ 𝑥𝐵 𝜓 ↔ ∀ 𝑦𝐶 𝜒 ) )