| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioossicc |
⊢ ( 0 (,) 𝑈 ) ⊆ ( 0 [,] 𝑈 ) |
| 2 |
|
0re |
⊢ 0 ∈ ℝ |
| 3 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( 0 [,] 𝑈 ) ⊆ ℝ ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝑈 ∈ ℝ → ( 0 [,] 𝑈 ) ⊆ ℝ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 0 [,] 𝑈 ) ⊆ ℝ ) |
| 6 |
1 5
|
sstrid |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 0 (,) 𝑈 ) ⊆ ℝ ) |
| 7 |
2
|
a1i |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 0 ∈ ℝ ) |
| 8 |
|
simpl |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 ∈ ℝ ) |
| 9 |
|
0lt1 |
⊢ 0 < 1 |
| 10 |
|
1re |
⊢ 1 ∈ ℝ |
| 11 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝑈 ) → 0 < 𝑈 ) ) |
| 12 |
2 10 11
|
mp3an12 |
⊢ ( 𝑈 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝑈 ) → 0 < 𝑈 ) ) |
| 13 |
9 12
|
mpani |
⊢ ( 𝑈 ∈ ℝ → ( 1 < 𝑈 → 0 < 𝑈 ) ) |
| 14 |
13
|
imp |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 0 < 𝑈 ) |
| 15 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 16 |
5 15
|
sstrdi |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 0 [,] 𝑈 ) ⊆ ℂ ) |
| 17 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
| 18 |
17
|
a1i |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 19 |
|
ssel2 |
⊢ ( ( ( 0 [,] 𝑈 ) ⊆ ℝ ∧ 𝑦 ∈ ( 0 [,] 𝑈 ) ) → 𝑦 ∈ ℝ ) |
| 20 |
19
|
reefcld |
⊢ ( ( ( 0 [,] 𝑈 ) ⊆ ℝ ∧ 𝑦 ∈ ( 0 [,] 𝑈 ) ) → ( exp ‘ 𝑦 ) ∈ ℝ ) |
| 21 |
5 20
|
sylan |
⊢ ( ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) ∧ 𝑦 ∈ ( 0 [,] 𝑈 ) ) → ( exp ‘ 𝑦 ) ∈ ℝ ) |
| 22 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 23 |
|
simpr |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 1 < 𝑈 ) |
| 24 |
22 23
|
eqbrtrid |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( exp ‘ 0 ) < 𝑈 ) |
| 25 |
|
peano2re |
⊢ ( 𝑈 ∈ ℝ → ( 𝑈 + 1 ) ∈ ℝ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 𝑈 + 1 ) ∈ ℝ ) |
| 27 |
|
reefcl |
⊢ ( 𝑈 ∈ ℝ → ( exp ‘ 𝑈 ) ∈ ℝ ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( exp ‘ 𝑈 ) ∈ ℝ ) |
| 29 |
|
ltp1 |
⊢ ( 𝑈 ∈ ℝ → 𝑈 < ( 𝑈 + 1 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 < ( 𝑈 + 1 ) ) |
| 31 |
8
|
recnd |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 ∈ ℂ ) |
| 32 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 33 |
|
addcom |
⊢ ( ( 𝑈 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑈 + 1 ) = ( 1 + 𝑈 ) ) |
| 34 |
31 32 33
|
sylancl |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 𝑈 + 1 ) = ( 1 + 𝑈 ) ) |
| 35 |
8 14
|
elrpd |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 ∈ ℝ+ ) |
| 36 |
|
efgt1p |
⊢ ( 𝑈 ∈ ℝ+ → ( 1 + 𝑈 ) < ( exp ‘ 𝑈 ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 1 + 𝑈 ) < ( exp ‘ 𝑈 ) ) |
| 38 |
34 37
|
eqbrtrd |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 𝑈 + 1 ) < ( exp ‘ 𝑈 ) ) |
| 39 |
8 26 28 30 38
|
lttrd |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 < ( exp ‘ 𝑈 ) ) |
| 40 |
24 39
|
jca |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( ( exp ‘ 0 ) < 𝑈 ∧ 𝑈 < ( exp ‘ 𝑈 ) ) ) |
| 41 |
7 8 8 14 16 18 21 40
|
ivth |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ∃ 𝑥 ∈ ( 0 (,) 𝑈 ) ( exp ‘ 𝑥 ) = 𝑈 ) |
| 42 |
|
ssrexv |
⊢ ( ( 0 (,) 𝑈 ) ⊆ ℝ → ( ∃ 𝑥 ∈ ( 0 (,) 𝑈 ) ( exp ‘ 𝑥 ) = 𝑈 → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑈 ) ) |
| 43 |
6 41 42
|
sylc |
⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑈 ) |