Step |
Hyp |
Ref |
Expression |
1 |
|
relexprnd.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
relexprn |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ V ) → ran ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ran ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) |
4 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∈ V → ran ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) ) |
5 |
|
reldmrelexp |
⊢ Rel dom ↑𝑟 |
6 |
5
|
ovprc1 |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 ↑𝑟 𝑁 ) = ∅ ) |
7 |
6
|
rneqd |
⊢ ( ¬ 𝑅 ∈ V → ran ( 𝑅 ↑𝑟 𝑁 ) = ran ∅ ) |
8 |
|
rn0 |
⊢ ran ∅ = ∅ |
9 |
7 8
|
eqtrdi |
⊢ ( ¬ 𝑅 ∈ V → ran ( 𝑅 ↑𝑟 𝑁 ) = ∅ ) |
10 |
|
0ss |
⊢ ∅ ⊆ ∪ ∪ 𝑅 |
11 |
9 10
|
eqsstrdi |
⊢ ( ¬ 𝑅 ∈ V → ran ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) |
12 |
4 11
|
pm2.61d1 |
⊢ ( 𝜑 → ran ( 𝑅 ↑𝑟 𝑁 ) ⊆ ∪ ∪ 𝑅 ) |