| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relexprnd.1 |
|- ( ph -> N e. NN0 ) |
| 2 |
|
relexprn |
|- ( ( N e. NN0 /\ R e. _V ) -> ran ( R ^r N ) C_ U. U. R ) |
| 3 |
1 2
|
sylan |
|- ( ( ph /\ R e. _V ) -> ran ( R ^r N ) C_ U. U. R ) |
| 4 |
3
|
ex |
|- ( ph -> ( R e. _V -> ran ( R ^r N ) C_ U. U. R ) ) |
| 5 |
|
reldmrelexp |
|- Rel dom ^r |
| 6 |
5
|
ovprc1 |
|- ( -. R e. _V -> ( R ^r N ) = (/) ) |
| 7 |
6
|
rneqd |
|- ( -. R e. _V -> ran ( R ^r N ) = ran (/) ) |
| 8 |
|
rn0 |
|- ran (/) = (/) |
| 9 |
7 8
|
eqtrdi |
|- ( -. R e. _V -> ran ( R ^r N ) = (/) ) |
| 10 |
|
0ss |
|- (/) C_ U. U. R |
| 11 |
9 10
|
eqsstrdi |
|- ( -. R e. _V -> ran ( R ^r N ) C_ U. U. R ) |
| 12 |
4 11
|
pm2.61d1 |
|- ( ph -> ran ( R ^r N ) C_ U. U. R ) |