Metamath Proof Explorer


Theorem relexprnd

Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypothesis relexprnd.1
|- ( ph -> N e. NN0 )
Assertion relexprnd
|- ( ph -> ran ( R ^r N ) C_ U. U. R )

Proof

Step Hyp Ref Expression
1 relexprnd.1
 |-  ( ph -> N e. NN0 )
2 relexprn
 |-  ( ( N e. NN0 /\ R e. _V ) -> ran ( R ^r N ) C_ U. U. R )
3 1 2 sylan
 |-  ( ( ph /\ R e. _V ) -> ran ( R ^r N ) C_ U. U. R )
4 3 ex
 |-  ( ph -> ( R e. _V -> ran ( R ^r N ) C_ U. U. R ) )
5 reldmrelexp
 |-  Rel dom ^r
6 5 ovprc1
 |-  ( -. R e. _V -> ( R ^r N ) = (/) )
7 6 rneqd
 |-  ( -. R e. _V -> ran ( R ^r N ) = ran (/) )
8 rn0
 |-  ran (/) = (/)
9 7 8 eqtrdi
 |-  ( -. R e. _V -> ran ( R ^r N ) = (/) )
10 0ss
 |-  (/) C_ U. U. R
11 9 10 eqsstrdi
 |-  ( -. R e. _V -> ran ( R ^r N ) C_ U. U. R )
12 4 11 pm2.61d1
 |-  ( ph -> ran ( R ^r N ) C_ U. U. R )