Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N = 1 /\ ( N e. NN0 /\ R e. V ) ) -> N = 1 ) |
2 |
1
|
oveq2d |
|- ( ( N = 1 /\ ( N e. NN0 /\ R e. V ) ) -> ( R ^r N ) = ( R ^r 1 ) ) |
3 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
4 |
3
|
ad2antll |
|- ( ( N = 1 /\ ( N e. NN0 /\ R e. V ) ) -> ( R ^r 1 ) = R ) |
5 |
2 4
|
eqtrd |
|- ( ( N = 1 /\ ( N e. NN0 /\ R e. V ) ) -> ( R ^r N ) = R ) |
6 |
5
|
unieqd |
|- ( ( N = 1 /\ ( N e. NN0 /\ R e. V ) ) -> U. ( R ^r N ) = U. R ) |
7 |
6
|
unieqd |
|- ( ( N = 1 /\ ( N e. NN0 /\ R e. V ) ) -> U. U. ( R ^r N ) = U. U. R ) |
8 |
|
eqimss |
|- ( U. U. ( R ^r N ) = U. U. R -> U. U. ( R ^r N ) C_ U. U. R ) |
9 |
7 8
|
syl |
|- ( ( N = 1 /\ ( N e. NN0 /\ R e. V ) ) -> U. U. ( R ^r N ) C_ U. U. R ) |
10 |
9
|
ex |
|- ( N = 1 -> ( ( N e. NN0 /\ R e. V ) -> U. U. ( R ^r N ) C_ U. U. R ) ) |
11 |
|
simp2 |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> N e. NN0 ) |
12 |
|
simp3 |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> R e. V ) |
13 |
|
simp1 |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> -. N = 1 ) |
14 |
13
|
pm2.21d |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> ( N = 1 -> Rel R ) ) |
15 |
11 12 14
|
3jca |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> ( N e. NN0 /\ R e. V /\ ( N = 1 -> Rel R ) ) ) |
16 |
|
relexprelg |
|- ( ( N e. NN0 /\ R e. V /\ ( N = 1 -> Rel R ) ) -> Rel ( R ^r N ) ) |
17 |
|
relfld |
|- ( Rel ( R ^r N ) -> U. U. ( R ^r N ) = ( dom ( R ^r N ) u. ran ( R ^r N ) ) ) |
18 |
15 16 17
|
3syl |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> U. U. ( R ^r N ) = ( dom ( R ^r N ) u. ran ( R ^r N ) ) ) |
19 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
20 |
|
relexpnndm |
|- ( ( N e. NN /\ R e. V ) -> dom ( R ^r N ) C_ dom R ) |
21 |
|
relexpnnrn |
|- ( ( N e. NN /\ R e. V ) -> ran ( R ^r N ) C_ ran R ) |
22 |
|
unss12 |
|- ( ( dom ( R ^r N ) C_ dom R /\ ran ( R ^r N ) C_ ran R ) -> ( dom ( R ^r N ) u. ran ( R ^r N ) ) C_ ( dom R u. ran R ) ) |
23 |
20 21 22
|
syl2anc |
|- ( ( N e. NN /\ R e. V ) -> ( dom ( R ^r N ) u. ran ( R ^r N ) ) C_ ( dom R u. ran R ) ) |
24 |
23
|
ex |
|- ( N e. NN -> ( R e. V -> ( dom ( R ^r N ) u. ran ( R ^r N ) ) C_ ( dom R u. ran R ) ) ) |
25 |
|
simpl |
|- ( ( N = 0 /\ R e. V ) -> N = 0 ) |
26 |
25
|
oveq2d |
|- ( ( N = 0 /\ R e. V ) -> ( R ^r N ) = ( R ^r 0 ) ) |
27 |
|
relexp0g |
|- ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
28 |
27
|
adantl |
|- ( ( N = 0 /\ R e. V ) -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
29 |
26 28
|
eqtrd |
|- ( ( N = 0 /\ R e. V ) -> ( R ^r N ) = ( _I |` ( dom R u. ran R ) ) ) |
30 |
29
|
dmeqd |
|- ( ( N = 0 /\ R e. V ) -> dom ( R ^r N ) = dom ( _I |` ( dom R u. ran R ) ) ) |
31 |
|
dmresi |
|- dom ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) |
32 |
30 31
|
eqtrdi |
|- ( ( N = 0 /\ R e. V ) -> dom ( R ^r N ) = ( dom R u. ran R ) ) |
33 |
|
eqimss |
|- ( dom ( R ^r N ) = ( dom R u. ran R ) -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) |
34 |
32 33
|
syl |
|- ( ( N = 0 /\ R e. V ) -> dom ( R ^r N ) C_ ( dom R u. ran R ) ) |
35 |
29
|
rneqd |
|- ( ( N = 0 /\ R e. V ) -> ran ( R ^r N ) = ran ( _I |` ( dom R u. ran R ) ) ) |
36 |
|
rnresi |
|- ran ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) |
37 |
35 36
|
eqtrdi |
|- ( ( N = 0 /\ R e. V ) -> ran ( R ^r N ) = ( dom R u. ran R ) ) |
38 |
|
eqimss |
|- ( ran ( R ^r N ) = ( dom R u. ran R ) -> ran ( R ^r N ) C_ ( dom R u. ran R ) ) |
39 |
37 38
|
syl |
|- ( ( N = 0 /\ R e. V ) -> ran ( R ^r N ) C_ ( dom R u. ran R ) ) |
40 |
34 39
|
unssd |
|- ( ( N = 0 /\ R e. V ) -> ( dom ( R ^r N ) u. ran ( R ^r N ) ) C_ ( dom R u. ran R ) ) |
41 |
40
|
ex |
|- ( N = 0 -> ( R e. V -> ( dom ( R ^r N ) u. ran ( R ^r N ) ) C_ ( dom R u. ran R ) ) ) |
42 |
24 41
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( R e. V -> ( dom ( R ^r N ) u. ran ( R ^r N ) ) C_ ( dom R u. ran R ) ) ) |
43 |
19 42
|
sylbi |
|- ( N e. NN0 -> ( R e. V -> ( dom ( R ^r N ) u. ran ( R ^r N ) ) C_ ( dom R u. ran R ) ) ) |
44 |
11 12 43
|
sylc |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> ( dom ( R ^r N ) u. ran ( R ^r N ) ) C_ ( dom R u. ran R ) ) |
45 |
18 44
|
eqsstrd |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> U. U. ( R ^r N ) C_ ( dom R u. ran R ) ) |
46 |
|
dmrnssfld |
|- ( dom R u. ran R ) C_ U. U. R |
47 |
45 46
|
sstrdi |
|- ( ( -. N = 1 /\ N e. NN0 /\ R e. V ) -> U. U. ( R ^r N ) C_ U. U. R ) |
48 |
47
|
3expib |
|- ( -. N = 1 -> ( ( N e. NN0 /\ R e. V ) -> U. U. ( R ^r N ) C_ U. U. R ) ) |
49 |
10 48
|
pm2.61i |
|- ( ( N e. NN0 /\ R e. V ) -> U. U. ( R ^r N ) C_ U. U. R ) |