Description: The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexpfld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | 1 | oveq2d | |
3 | relexp1g | |
|
4 | 3 | ad2antll | |
5 | 2 4 | eqtrd | |
6 | 5 | unieqd | |
7 | 6 | unieqd | |
8 | eqimss | |
|
9 | 7 8 | syl | |
10 | 9 | ex | |
11 | simp2 | |
|
12 | simp3 | |
|
13 | simp1 | |
|
14 | 13 | pm2.21d | |
15 | 11 12 14 | 3jca | |
16 | relexprelg | |
|
17 | relfld | |
|
18 | 15 16 17 | 3syl | |
19 | elnn0 | |
|
20 | relexpnndm | |
|
21 | relexpnnrn | |
|
22 | unss12 | |
|
23 | 20 21 22 | syl2anc | |
24 | 23 | ex | |
25 | simpl | |
|
26 | 25 | oveq2d | |
27 | relexp0g | |
|
28 | 27 | adantl | |
29 | 26 28 | eqtrd | |
30 | 29 | dmeqd | |
31 | dmresi | |
|
32 | 30 31 | eqtrdi | |
33 | eqimss | |
|
34 | 32 33 | syl | |
35 | 29 | rneqd | |
36 | rnresi | |
|
37 | 35 36 | eqtrdi | |
38 | eqimss | |
|
39 | 37 38 | syl | |
40 | 34 39 | unssd | |
41 | 40 | ex | |
42 | 24 41 | jaoi | |
43 | 19 42 | sylbi | |
44 | 11 12 43 | sylc | |
45 | 18 44 | eqsstrd | |
46 | dmrnssfld | |
|
47 | 45 46 | sstrdi | |
48 | 47 | 3expib | |
49 | 10 48 | pm2.61i | |