| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
1
|
oveq2d |
|
| 3 |
|
relexp1g |
|
| 4 |
3
|
ad2antll |
|
| 5 |
2 4
|
eqtrd |
|
| 6 |
5
|
unieqd |
|
| 7 |
6
|
unieqd |
|
| 8 |
|
eqimss |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
ex |
|
| 11 |
|
simp2 |
|
| 12 |
|
simp3 |
|
| 13 |
|
simp1 |
|
| 14 |
13
|
pm2.21d |
|
| 15 |
11 12 14
|
3jca |
|
| 16 |
|
relexprelg |
|
| 17 |
|
relfld |
|
| 18 |
15 16 17
|
3syl |
|
| 19 |
|
elnn0 |
|
| 20 |
|
relexpnndm |
|
| 21 |
|
relexpnnrn |
|
| 22 |
|
unss12 |
|
| 23 |
20 21 22
|
syl2anc |
|
| 24 |
23
|
ex |
|
| 25 |
|
simpl |
|
| 26 |
25
|
oveq2d |
|
| 27 |
|
relexp0g |
|
| 28 |
27
|
adantl |
|
| 29 |
26 28
|
eqtrd |
|
| 30 |
29
|
dmeqd |
|
| 31 |
|
dmresi |
|
| 32 |
30 31
|
eqtrdi |
|
| 33 |
|
eqimss |
|
| 34 |
32 33
|
syl |
|
| 35 |
29
|
rneqd |
|
| 36 |
|
rnresi |
|
| 37 |
35 36
|
eqtrdi |
|
| 38 |
|
eqimss |
|
| 39 |
37 38
|
syl |
|
| 40 |
34 39
|
unssd |
|
| 41 |
40
|
ex |
|
| 42 |
24 41
|
jaoi |
|
| 43 |
19 42
|
sylbi |
|
| 44 |
11 12 43
|
sylc |
|
| 45 |
18 44
|
eqsstrd |
|
| 46 |
|
dmrnssfld |
|
| 47 |
45 46
|
sstrdi |
|
| 48 |
47
|
3expib |
|
| 49 |
10 48
|
pm2.61i |
|