Metamath Proof Explorer


Theorem relpeq3

Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Assertion relpeq3 ( 𝑆 = 𝑇 → ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 RelPres 𝑅 , 𝑇 ( 𝐴 , 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 breq ( 𝑆 = 𝑇 → ( ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ↔ ( 𝐻𝑥 ) 𝑇 ( 𝐻𝑦 ) ) )
2 1 imbi2d ( 𝑆 = 𝑇 → ( ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑇 ( 𝐻𝑦 ) ) ) )
3 2 2ralbidv ( 𝑆 = 𝑇 → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑇 ( 𝐻𝑦 ) ) ) )
4 3 anbi2d ( 𝑆 = 𝑇 → ( ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) ↔ ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑇 ( 𝐻𝑦 ) ) ) ) )
5 df-relp ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
6 df-relp ( 𝐻 RelPres 𝑅 , 𝑇 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑇 ( 𝐻𝑦 ) ) ) )
7 4 5 6 3bitr4g ( 𝑆 = 𝑇 → ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 RelPres 𝑅 , 𝑇 ( 𝐴 , 𝐵 ) ) )