Step |
Hyp |
Ref |
Expression |
1 |
|
breq |
⊢ ( 𝑆 = 𝑇 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑇 ( 𝐻 ‘ 𝑦 ) ) ) |
2 |
1
|
imbi2d |
⊢ ( 𝑆 = 𝑇 → ( ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑇 ( 𝐻 ‘ 𝑦 ) ) ) ) |
3 |
2
|
2ralbidv |
⊢ ( 𝑆 = 𝑇 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑇 ( 𝐻 ‘ 𝑦 ) ) ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑆 = 𝑇 → ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑇 ( 𝐻 ‘ 𝑦 ) ) ) ) ) |
5 |
|
df-relp |
⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
6 |
|
df-relp |
⊢ ( 𝐻 RelPres 𝑅 , 𝑇 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑇 ( 𝐻 ‘ 𝑦 ) ) ) ) |
7 |
4 5 6
|
3bitr4g |
⊢ ( 𝑆 = 𝑇 → ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 RelPres 𝑅 , 𝑇 ( 𝐴 , 𝐵 ) ) ) |