Step |
Hyp |
Ref |
Expression |
1 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
3 |
|
df-f1 |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ 𝐶 ) ) ) |
4 |
|
resf1extb |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ) |
5 |
|
df-f1 |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |
6 |
5
|
simprbi |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) |
7 |
4 6
|
biimtrdi |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |
8 |
7
|
expd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) ) |
9 |
3 8
|
biimtrrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) ) |
10 |
2 9
|
mpand |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) ) |
11 |
10
|
impd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |
12 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
13 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
14 |
|
eldifi |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ 𝐴 ) |
15 |
14
|
snssd |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → { 𝑋 } ⊆ 𝐴 ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → { 𝑋 } ⊆ 𝐴 ) |
17 |
13 16
|
unssd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐶 ∪ { 𝑋 } ) ⊆ 𝐴 ) |
18 |
12 17
|
fssresd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) |
19 |
3
|
simprbi |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → Fun ◡ ( 𝐹 ↾ 𝐶 ) ) |
20 |
19
|
anim1i |
⊢ ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) |
21 |
4 20
|
biimtrrdi |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) ) |
22 |
5 21
|
biimtrrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) ) |
23 |
18 22
|
mpand |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) ) |
24 |
11 23
|
impbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |