Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
3 |
|
eldifi |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ 𝐴 ) |
4 |
3
|
snssd |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → { 𝑋 } ⊆ 𝐴 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → { 𝑋 } ⊆ 𝐴 ) |
6 |
2 5
|
unssd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐶 ∪ { 𝑋 } ) ⊆ 𝐴 ) |
7 |
1 6
|
fssresd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) |
9 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ↔ ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ) |
10 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) |
11 |
9 10
|
anbi12i |
⊢ ( ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) ↔ ( ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) ) |
12 |
|
dff14a |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) ) |
13 |
|
neeq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ≠ 𝑥 ↔ 𝑦 ≠ 𝑥 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) |
15 |
14
|
neeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ↔ ( 𝑦 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) ) |
17 |
|
neeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ≠ 𝑥 ↔ 𝑦 ≠ 𝑧 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) |
19 |
18
|
neeq2d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) |
20 |
17 19
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ↔ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ) |
21 |
16 20
|
rspc2v |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ) |
22 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) |
23 |
22
|
fvresd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
24 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐶 ) |
25 |
24
|
fvresd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
26 |
23 25
|
neeq12d |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
27 |
26
|
imbi2d |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ↔ ( 𝑦 ≠ 𝑧 → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) ) |
28 |
27
|
bi23imp13 |
⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) |
29 |
|
elun1 |
⊢ ( 𝑦 ∈ 𝐶 → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
31 |
30
|
fvresd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
32 |
|
elun1 |
⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
34 |
33
|
fvresd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
35 |
31 34
|
neeq12d |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
36 |
35
|
3ad2ant1 |
⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
37 |
28 36
|
mpbird |
⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
38 |
37
|
3exp |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
39 |
21 38
|
syldc |
⊢ ( ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
41 |
40
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
42 |
12 41
|
biimtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
43 |
42
|
a1dd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
44 |
43
|
imp32 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
45 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
46 |
45
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 Fn 𝐴 ) |
47 |
46 2
|
fvelimabd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
48 |
47
|
notbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ¬ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ↔ ¬ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
49 |
|
df-nel |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ) |
50 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ¬ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
51 |
48 49 50
|
3bitr4g |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
52 |
|
df-ne |
⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
54 |
53
|
neeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
55 |
52 54
|
bitr3id |
⊢ ( 𝑥 = 𝑧 → ( ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
56 |
55
|
rspcv |
⊢ ( 𝑧 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
57 |
56
|
ad2antll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
58 |
32
|
ad2antll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
59 |
58
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
60 |
59
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
61 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝑋 } → 𝑦 = 𝑋 ) |
62 |
61
|
eqcomd |
⊢ ( 𝑦 ∈ { 𝑋 } → 𝑋 = 𝑦 ) |
63 |
62
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑋 = 𝑦 ) |
64 |
63
|
fveq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ) |
65 |
|
elun2 |
⊢ ( 𝑦 ∈ { 𝑋 } → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
66 |
65
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
67 |
66
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
68 |
64 67
|
eqtr4d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
69 |
60 68
|
neeq12d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) ) |
70 |
69
|
biimpa |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
71 |
70
|
necomd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
72 |
71
|
a1d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
73 |
72
|
ex |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
74 |
57 73
|
syld |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
75 |
74
|
a1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
76 |
75
|
ex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
77 |
76
|
com24 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
78 |
51 77
|
sylbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
79 |
78
|
impcomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
80 |
79
|
imp |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
81 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
82 |
81
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
83 |
52 82
|
bitr3id |
⊢ ( 𝑥 = 𝑦 → ( ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
84 |
83
|
rspcv |
⊢ ( 𝑦 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
85 |
84
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
86 |
29
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
87 |
86
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
88 |
87
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
89 |
|
elsni |
⊢ ( 𝑧 ∈ { 𝑋 } → 𝑧 = 𝑋 ) |
90 |
89
|
eqcomd |
⊢ ( 𝑧 ∈ { 𝑋 } → 𝑋 = 𝑧 ) |
91 |
90
|
ad2antll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑋 = 𝑧 ) |
92 |
91
|
fveq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑧 ) ) |
93 |
|
elun2 |
⊢ ( 𝑧 ∈ { 𝑋 } → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
94 |
93
|
ad2antll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
95 |
94
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
96 |
92 95
|
eqtr4d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
97 |
88 96
|
neeq12d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
98 |
97
|
biimpd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
99 |
98
|
a1dd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
100 |
85 99
|
syld |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
101 |
100
|
a1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
102 |
101
|
ex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
103 |
102
|
com24 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
104 |
51 103
|
sylbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
105 |
104
|
impcomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
106 |
105
|
imp |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
107 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) |
108 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝑋 } ↔ 𝑧 = 𝑋 ) |
109 |
|
eqtr3 |
⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝑋 ) → 𝑦 = 𝑧 ) |
110 |
|
eqneqall |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
111 |
109 110
|
syl |
⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
112 |
107 108 111
|
syl2anb |
⊢ ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
113 |
112
|
a1i |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
114 |
44 80 106 113
|
ccased |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
115 |
11 114
|
biimtrid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
116 |
115
|
ralrimivv |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
117 |
|
dff14a |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
118 |
8 116 117
|
sylanbrc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) |
119 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
120 |
119
|
3adant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
121 |
120
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
122 |
|
df-f1 |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |
123 |
|
funres11 |
⊢ ( Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
124 |
122 123
|
simplbiim |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
125 |
124
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
126 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ { 𝑋 } ) |
127 |
126
|
resabs1i |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) = ( 𝐹 ↾ 𝐶 ) |
128 |
127
|
eqcomi |
⊢ ( 𝐹 ↾ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) |
129 |
128
|
cnveqi |
⊢ ◡ ( 𝐹 ↾ 𝐶 ) = ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) |
130 |
129
|
funeqi |
⊢ ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ↔ Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
131 |
125 130
|
sylibr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → Fun ◡ ( 𝐹 ↾ 𝐶 ) ) |
132 |
|
df-f1 |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ 𝐶 ) ) ) |
133 |
121 131 132
|
sylanbrc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ) |
134 |
|
elun1 |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
135 |
|
snidg |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ { 𝑋 } ) |
136 |
135
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ { 𝑋 } ) |
137 |
|
elun2 |
⊢ ( 𝑋 ∈ { 𝑋 } → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
138 |
136 137
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
139 |
|
neeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≠ 𝑧 ↔ 𝑥 ≠ 𝑧 ) ) |
140 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ) |
141 |
140
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
142 |
139 141
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ↔ ( 𝑥 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
143 |
|
neeq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝑥 ≠ 𝑧 ↔ 𝑥 ≠ 𝑋 ) ) |
144 |
|
fveq2 |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) |
145 |
144
|
neeq2d |
⊢ ( 𝑧 = 𝑋 → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) |
146 |
143 145
|
imbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝑥 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ↔ ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
147 |
142 146
|
rspc2v |
⊢ ( ( 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
148 |
134 138 147
|
syl2anr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
149 |
148
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
150 |
|
eldifn |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝑋 ∈ 𝐶 ) |
151 |
|
nelelne |
⊢ ( ¬ 𝑋 ∈ 𝐶 → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) |
152 |
150 151
|
syl |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) |
153 |
152
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) |
154 |
153
|
imp |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ≠ 𝑋 ) |
155 |
154
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → 𝑥 ≠ 𝑋 ) |
156 |
|
pm2.27 |
⊢ ( 𝑥 ≠ 𝑋 → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) |
157 |
155 156
|
syl |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) |
158 |
134
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
159 |
158
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
160 |
159
|
fvresd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
161 |
135 137
|
syl |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
162 |
161
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
163 |
162
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
164 |
163
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
165 |
164
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
166 |
160 165
|
neeq12d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
167 |
157 166
|
sylibd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
168 |
149 167
|
syld |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
169 |
168
|
expimpd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
170 |
117 169
|
biimtrid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
171 |
170
|
impancom |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝑥 ∈ 𝐶 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
172 |
171
|
imp |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) |
173 |
172
|
neneqd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
174 |
173
|
ralrimiva |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
175 |
51
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
176 |
174 175
|
mpbird |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) |
177 |
133 176
|
jca |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) |
178 |
118 177
|
impbida |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ) |