| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 2 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
| 3 |
|
eldifi |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ 𝐴 ) |
| 4 |
3
|
snssd |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → { 𝑋 } ⊆ 𝐴 ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → { 𝑋 } ⊆ 𝐴 ) |
| 6 |
2 5
|
unssd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐶 ∪ { 𝑋 } ) ⊆ 𝐴 ) |
| 7 |
1 6
|
fssresd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) |
| 9 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ↔ ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ) |
| 10 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) |
| 11 |
9 10
|
anbi12i |
⊢ ( ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) ↔ ( ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) ) |
| 12 |
|
dff14a |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) ) |
| 13 |
|
neeq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ≠ 𝑥 ↔ 𝑦 ≠ 𝑥 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) |
| 15 |
14
|
neeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) |
| 16 |
13 15
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ↔ ( 𝑦 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) ) |
| 17 |
|
neeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ≠ 𝑥 ↔ 𝑦 ≠ 𝑧 ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) |
| 19 |
18
|
neeq2d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) |
| 20 |
17 19
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ↔ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ) |
| 21 |
16 20
|
rspc2v |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ) |
| 22 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) |
| 23 |
22
|
fvresd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐶 ) |
| 25 |
24
|
fvresd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 26 |
23 25
|
neeq12d |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ↔ ( 𝑦 ≠ 𝑧 → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 28 |
27
|
bi23imp13 |
⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) |
| 29 |
|
elun1 |
⊢ ( 𝑦 ∈ 𝐶 → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 31 |
30
|
fvresd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 32 |
|
elun1 |
⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 34 |
33
|
fvresd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 35 |
31 34
|
neeq12d |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
| 36 |
35
|
3ad2ant1 |
⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
| 37 |
28 36
|
mpbird |
⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 38 |
37
|
3exp |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 39 |
21 38
|
syldc |
⊢ ( ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 41 |
40
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 42 |
12 41
|
biimtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 43 |
42
|
a1dd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 44 |
43
|
imp32 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 45 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
| 46 |
45
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 47 |
46 2
|
fvelimabd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 48 |
47
|
notbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ¬ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ↔ ¬ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 49 |
|
df-nel |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ) |
| 50 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ¬ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 51 |
48 49 50
|
3bitr4g |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 52 |
|
df-ne |
⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 54 |
53
|
neeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 55 |
52 54
|
bitr3id |
⊢ ( 𝑥 = 𝑧 → ( ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 56 |
55
|
rspcv |
⊢ ( 𝑧 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 57 |
56
|
ad2antll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 58 |
32
|
ad2antll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 59 |
58
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 60 |
59
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 61 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝑋 } → 𝑦 = 𝑋 ) |
| 62 |
61
|
eqcomd |
⊢ ( 𝑦 ∈ { 𝑋 } → 𝑋 = 𝑦 ) |
| 63 |
62
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑋 = 𝑦 ) |
| 64 |
63
|
fveq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 65 |
|
elun2 |
⊢ ( 𝑦 ∈ { 𝑋 } → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 66 |
65
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 67 |
66
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 68 |
64 67
|
eqtr4d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
| 69 |
60 68
|
neeq12d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) ) |
| 70 |
69
|
biimpa |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
| 71 |
70
|
necomd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 72 |
71
|
a1d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 73 |
72
|
ex |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 74 |
57 73
|
syld |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 75 |
74
|
a1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 76 |
75
|
ex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 77 |
76
|
com24 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 78 |
51 77
|
sylbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 79 |
78
|
impcomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 80 |
79
|
imp |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 81 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 82 |
81
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 83 |
52 82
|
bitr3id |
⊢ ( 𝑥 = 𝑦 → ( ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 84 |
83
|
rspcv |
⊢ ( 𝑦 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 85 |
84
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 86 |
29
|
ad2antrl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 87 |
86
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 88 |
87
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
| 89 |
|
elsni |
⊢ ( 𝑧 ∈ { 𝑋 } → 𝑧 = 𝑋 ) |
| 90 |
89
|
eqcomd |
⊢ ( 𝑧 ∈ { 𝑋 } → 𝑋 = 𝑧 ) |
| 91 |
90
|
ad2antll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑋 = 𝑧 ) |
| 92 |
91
|
fveq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 93 |
|
elun2 |
⊢ ( 𝑧 ∈ { 𝑋 } → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 94 |
93
|
ad2antll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 95 |
94
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 96 |
92 95
|
eqtr4d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 97 |
88 96
|
neeq12d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 98 |
97
|
biimpd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 99 |
98
|
a1dd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 100 |
85 99
|
syld |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 101 |
100
|
a1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 102 |
101
|
ex |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 103 |
102
|
com24 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 104 |
51 103
|
sylbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 105 |
104
|
impcomd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 106 |
105
|
imp |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 107 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) |
| 108 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝑋 } ↔ 𝑧 = 𝑋 ) |
| 109 |
|
eqtr3 |
⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝑋 ) → 𝑦 = 𝑧 ) |
| 110 |
|
eqneqall |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 111 |
109 110
|
syl |
⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 112 |
107 108 111
|
syl2anb |
⊢ ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 113 |
112
|
a1i |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 114 |
44 80 106 113
|
ccased |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 115 |
11 114
|
biimtrid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 116 |
115
|
ralrimivv |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 117 |
|
dff14a |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 118 |
8 116 117
|
sylanbrc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) |
| 119 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
| 120 |
119
|
3adant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
| 121 |
120
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
| 122 |
|
df-f1 |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |
| 123 |
|
funres11 |
⊢ ( Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
| 124 |
122 123
|
simplbiim |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
| 125 |
124
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
| 126 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ { 𝑋 } ) |
| 127 |
126
|
resabs1i |
⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) = ( 𝐹 ↾ 𝐶 ) |
| 128 |
127
|
eqcomi |
⊢ ( 𝐹 ↾ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) |
| 129 |
128
|
cnveqi |
⊢ ◡ ( 𝐹 ↾ 𝐶 ) = ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) |
| 130 |
129
|
funeqi |
⊢ ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ↔ Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
| 131 |
125 130
|
sylibr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → Fun ◡ ( 𝐹 ↾ 𝐶 ) ) |
| 132 |
|
df-f1 |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ 𝐶 ) ) ) |
| 133 |
121 131 132
|
sylanbrc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ) |
| 134 |
|
elun1 |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 135 |
|
snidg |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ { 𝑋 } ) |
| 136 |
135
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ { 𝑋 } ) |
| 137 |
|
elun2 |
⊢ ( 𝑋 ∈ { 𝑋 } → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 138 |
136 137
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 139 |
|
neeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≠ 𝑧 ↔ 𝑥 ≠ 𝑧 ) ) |
| 140 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ) |
| 141 |
140
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 142 |
139 141
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ↔ ( 𝑥 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 143 |
|
neeq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝑥 ≠ 𝑧 ↔ 𝑥 ≠ 𝑋 ) ) |
| 144 |
|
fveq2 |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) |
| 145 |
144
|
neeq2d |
⊢ ( 𝑧 = 𝑋 → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) |
| 146 |
143 145
|
imbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝑥 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ↔ ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
| 147 |
142 146
|
rspc2v |
⊢ ( ( 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
| 148 |
134 138 147
|
syl2anr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
| 149 |
148
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
| 150 |
|
eldifn |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝑋 ∈ 𝐶 ) |
| 151 |
|
nelelne |
⊢ ( ¬ 𝑋 ∈ 𝐶 → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) |
| 152 |
150 151
|
syl |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) |
| 153 |
152
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) |
| 154 |
153
|
imp |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ≠ 𝑋 ) |
| 155 |
154
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → 𝑥 ≠ 𝑋 ) |
| 156 |
|
pm2.27 |
⊢ ( 𝑥 ≠ 𝑋 → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) |
| 157 |
155 156
|
syl |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) |
| 158 |
134
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 159 |
158
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 160 |
159
|
fvresd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 161 |
135 137
|
syl |
⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 162 |
161
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 163 |
162
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 164 |
163
|
fvresd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 165 |
164
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 166 |
160 165
|
neeq12d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 167 |
157 166
|
sylibd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 168 |
149 167
|
syld |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 169 |
168
|
expimpd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 170 |
117 169
|
biimtrid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 171 |
170
|
impancom |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝑥 ∈ 𝐶 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 172 |
171
|
imp |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) |
| 173 |
172
|
neneqd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 174 |
173
|
ralrimiva |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 175 |
51
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 176 |
174 175
|
mpbird |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) |
| 177 |
133 176
|
jca |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) |
| 178 |
118 177
|
impbida |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ) |