Metamath Proof Explorer


Theorem resf1st

Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resf1st.f ( 𝜑𝐹𝑉 )
resf1st.h ( 𝜑𝐻𝑊 )
resf1st.s ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
Assertion resf1st ( 𝜑 → ( 1st ‘ ( 𝐹f 𝐻 ) ) = ( ( 1st𝐹 ) ↾ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 resf1st.f ( 𝜑𝐹𝑉 )
2 resf1st.h ( 𝜑𝐻𝑊 )
3 resf1st.s ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
4 1 2 resfval ( 𝜑 → ( 𝐹f 𝐻 ) = ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ )
5 4 fveq2d ( 𝜑 → ( 1st ‘ ( 𝐹f 𝐻 ) ) = ( 1st ‘ ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ ) )
6 fvex ( 1st𝐹 ) ∈ V
7 6 resex ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ∈ V
8 dmexg ( 𝐻𝑊 → dom 𝐻 ∈ V )
9 mptexg ( dom 𝐻 ∈ V → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ∈ V )
10 2 8 9 3syl ( 𝜑 → ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ∈ V )
11 op1stg ( ( ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) ∈ V ∧ ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ∈ V ) → ( 1st ‘ ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ ) = ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) )
12 7 10 11 sylancr ( 𝜑 → ( 1st ‘ ⟨ ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) , ( 𝑧 ∈ dom 𝐻 ↦ ( ( ( 2nd𝐹 ) ‘ 𝑧 ) ↾ ( 𝐻𝑧 ) ) ) ⟩ ) = ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) )
13 3 fndmd ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) )
14 13 dmeqd ( 𝜑 → dom dom 𝐻 = dom ( 𝑆 × 𝑆 ) )
15 dmxpid dom ( 𝑆 × 𝑆 ) = 𝑆
16 14 15 eqtrdi ( 𝜑 → dom dom 𝐻 = 𝑆 )
17 16 reseq2d ( 𝜑 → ( ( 1st𝐹 ) ↾ dom dom 𝐻 ) = ( ( 1st𝐹 ) ↾ 𝑆 ) )
18 5 12 17 3eqtrd ( 𝜑 → ( 1st ‘ ( 𝐹f 𝐻 ) ) = ( ( 1st𝐹 ) ↾ 𝑆 ) )