Metamath Proof Explorer


Theorem resinval

Description: The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion resinval ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 ax-icn i ∈ ℂ
2 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
3 cjmul ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) )
4 1 2 3 sylancr ( 𝐴 ∈ ℝ → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) )
5 cji ( ∗ ‘ i ) = - i
6 5 oveq1i ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · ( ∗ ‘ 𝐴 ) )
7 cjre ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 )
8 7 oveq2d ( 𝐴 ∈ ℝ → ( - i · ( ∗ ‘ 𝐴 ) ) = ( - i · 𝐴 ) )
9 6 8 syl5eq ( 𝐴 ∈ ℝ → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · 𝐴 ) )
10 4 9 eqtrd ( 𝐴 ∈ ℝ → ( ∗ ‘ ( i · 𝐴 ) ) = ( - i · 𝐴 ) )
11 10 fveq2d ( 𝐴 ∈ ℝ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( - i · 𝐴 ) ) )
12 mulcl ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ )
13 1 2 12 sylancr ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ )
14 efcj ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) )
15 13 14 syl ( 𝐴 ∈ ℝ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) )
16 11 15 eqtr3d ( 𝐴 ∈ ℝ → ( exp ‘ ( - i · 𝐴 ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) )
17 16 oveq2d ( 𝐴 ∈ ℝ → ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) − ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) )
18 17 oveq1d ( 𝐴 ∈ ℝ → ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) )
19 sinval ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) )
20 2 19 syl ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) )
21 efcl ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ )
22 imval2 ( ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ → ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) )
23 13 21 22 3syl ( 𝐴 ∈ ℝ → ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) )
24 18 20 23 3eqtr4d ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) = ( ℑ ‘ ( exp ‘ ( i · 𝐴 ) ) ) )