| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressbas.r | ⊢ 𝑅  =  ( 𝑊  ↾s  𝐴 ) | 
						
							| 2 |  | ressbas.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 3 | 1 2 | ressbas | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 4 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 5 | 3 4 | eqsstrrdi | ⊢ ( 𝐴  ∈  V  →  ( Base ‘ 𝑅 )  ⊆  𝐵 ) | 
						
							| 6 |  | reldmress | ⊢ Rel  dom   ↾s | 
						
							| 7 | 6 | ovprc2 | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝑊  ↾s  𝐴 )  =  ∅ ) | 
						
							| 8 | 1 7 | eqtrid | ⊢ ( ¬  𝐴  ∈  V  →  𝑅  =  ∅ ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ¬  𝐴  ∈  V  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ∅ ) ) | 
						
							| 10 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 11 |  | 0ss | ⊢ ∅  ⊆  𝐵 | 
						
							| 12 | 10 11 | eqsstrri | ⊢ ( Base ‘ ∅ )  ⊆  𝐵 | 
						
							| 13 | 9 12 | eqsstrdi | ⊢ ( ¬  𝐴  ∈  V  →  ( Base ‘ 𝑅 )  ⊆  𝐵 ) | 
						
							| 14 | 5 13 | pm2.61i | ⊢ ( Base ‘ 𝑅 )  ⊆  𝐵 |