| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringinvnzdiv.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ringinvnzdiv.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | ringinvnzdiv.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | ringinvnzdiv.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | ringinvnzdiv.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 |  | ringinvnzdiv.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | ringinvnzdiv.a | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  𝐵 ( 𝑎  ·  𝑋 )  =   1  ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑋  =   0   →  ( 𝑎  ·  𝑋 )  =  ( 𝑎  ·   0  ) ) | 
						
							| 9 | 1 2 4 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  ·   0  )  =   0  ) | 
						
							| 10 | 5 9 | sylan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  ·   0  )  =   0  ) | 
						
							| 11 |  | eqeq12 | ⊢ ( ( ( 𝑎  ·  𝑋 )  =   1   ∧  ( 𝑎  ·   0  )  =   0  )  →  ( ( 𝑎  ·  𝑋 )  =  ( 𝑎  ·   0  )  ↔   1   =   0  ) ) | 
						
							| 12 | 11 | biimpd | ⊢ ( ( ( 𝑎  ·  𝑋 )  =   1   ∧  ( 𝑎  ·   0  )  =   0  )  →  ( ( 𝑎  ·  𝑋 )  =  ( 𝑎  ·   0  )  →   1   =   0  ) ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝑎  ·  𝑋 )  =   1   →  ( ( 𝑎  ·   0  )  =   0   →  ( ( 𝑎  ·  𝑋 )  =  ( 𝑎  ·   0  )  →   1   =   0  ) ) ) | 
						
							| 14 | 10 13 | mpan9 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑎  ·  𝑋 )  =   1  )  →  ( ( 𝑎  ·  𝑋 )  =  ( 𝑎  ·   0  )  →   1   =   0  ) ) | 
						
							| 15 | 8 14 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑎  ·  𝑋 )  =   1  )  →  ( 𝑋  =   0   →   1   =   0  ) ) | 
						
							| 16 |  | oveq2 | ⊢ (  1   =   0   →  ( 𝑋  ·   1  )  =  ( 𝑋  ·   0  ) ) | 
						
							| 17 | 1 2 3 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ·   1  )  =  𝑋 ) | 
						
							| 18 | 1 2 4 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ·   0  )  =   0  ) | 
						
							| 19 | 17 18 | eqeq12d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑋  ·   1  )  =  ( 𝑋  ·   0  )  ↔  𝑋  =   0  ) ) | 
						
							| 20 | 19 | biimpd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑋  ·   1  )  =  ( 𝑋  ·   0  )  →  𝑋  =   0  ) ) | 
						
							| 21 | 5 6 20 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑋  ·   1  )  =  ( 𝑋  ·   0  )  →  𝑋  =   0  ) ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑎  ·  𝑋 )  =   1  )  →  ( ( 𝑋  ·   1  )  =  ( 𝑋  ·   0  )  →  𝑋  =   0  ) ) | 
						
							| 23 | 16 22 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑎  ·  𝑋 )  =   1  )  →  (  1   =   0   →  𝑋  =   0  ) ) | 
						
							| 24 | 15 23 | impbid | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑎  ·  𝑋 )  =   1  )  →  ( 𝑋  =   0   ↔   1   =   0  ) ) | 
						
							| 25 | 24 7 | r19.29a | ⊢ ( 𝜑  →  ( 𝑋  =   0   ↔   1   =   0  ) ) | 
						
							| 26 | 25 | necon3bid | ⊢ ( 𝜑  →  ( 𝑋  ≠   0   ↔   1   ≠   0  ) ) |