| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringinvnzdiv.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | ringinvnzdiv.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | ringinvnzdiv.u |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | ringinvnzdiv.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | ringinvnzdiv.r |  |-  ( ph -> R e. Ring ) | 
						
							| 6 |  | ringinvnzdiv.x |  |-  ( ph -> X e. B ) | 
						
							| 7 |  | ringinvnzdiv.a |  |-  ( ph -> E. a e. B ( a .x. X ) = .1. ) | 
						
							| 8 |  | oveq2 |  |-  ( X = .0. -> ( a .x. X ) = ( a .x. .0. ) ) | 
						
							| 9 | 1 2 4 | ringrz |  |-  ( ( R e. Ring /\ a e. B ) -> ( a .x. .0. ) = .0. ) | 
						
							| 10 | 5 9 | sylan |  |-  ( ( ph /\ a e. B ) -> ( a .x. .0. ) = .0. ) | 
						
							| 11 |  | eqeq12 |  |-  ( ( ( a .x. X ) = .1. /\ ( a .x. .0. ) = .0. ) -> ( ( a .x. X ) = ( a .x. .0. ) <-> .1. = .0. ) ) | 
						
							| 12 | 11 | biimpd |  |-  ( ( ( a .x. X ) = .1. /\ ( a .x. .0. ) = .0. ) -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) | 
						
							| 13 | 12 | ex |  |-  ( ( a .x. X ) = .1. -> ( ( a .x. .0. ) = .0. -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) ) | 
						
							| 14 | 10 13 | mpan9 |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) | 
						
							| 15 | 8 14 | syl5 |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( X = .0. -> .1. = .0. ) ) | 
						
							| 16 |  | oveq2 |  |-  ( .1. = .0. -> ( X .x. .1. ) = ( X .x. .0. ) ) | 
						
							| 17 | 1 2 3 | ringridm |  |-  ( ( R e. Ring /\ X e. B ) -> ( X .x. .1. ) = X ) | 
						
							| 18 | 1 2 4 | ringrz |  |-  ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) | 
						
							| 19 | 17 18 | eqeq12d |  |-  ( ( R e. Ring /\ X e. B ) -> ( ( X .x. .1. ) = ( X .x. .0. ) <-> X = .0. ) ) | 
						
							| 20 | 19 | biimpd |  |-  ( ( R e. Ring /\ X e. B ) -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) | 
						
							| 21 | 5 6 20 | syl2anc |  |-  ( ph -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) | 
						
							| 22 | 21 | ad2antrr |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) | 
						
							| 23 | 16 22 | syl5 |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. = .0. -> X = .0. ) ) | 
						
							| 24 | 15 23 | impbid |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( X = .0. <-> .1. = .0. ) ) | 
						
							| 25 | 24 7 | r19.29a |  |-  ( ph -> ( X = .0. <-> .1. = .0. ) ) | 
						
							| 26 | 25 | necon3bid |  |-  ( ph -> ( X =/= .0. <-> .1. =/= .0. ) ) |