Metamath Proof Explorer


Theorem rngciso

Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020)

Ref Expression
Hypotheses rngcsect.c 𝐶 = ( RngCat ‘ 𝑈 )
rngcsect.b 𝐵 = ( Base ‘ 𝐶 )
rngcsect.u ( 𝜑𝑈𝑉 )
rngcsect.x ( 𝜑𝑋𝐵 )
rngcsect.y ( 𝜑𝑌𝐵 )
rngciso.n 𝐼 = ( Iso ‘ 𝐶 )
Assertion rngciso ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 rngcsect.c 𝐶 = ( RngCat ‘ 𝑈 )
2 rngcsect.b 𝐵 = ( Base ‘ 𝐶 )
3 rngcsect.u ( 𝜑𝑈𝑉 )
4 rngcsect.x ( 𝜑𝑋𝐵 )
5 rngcsect.y ( 𝜑𝑌𝐵 )
6 rngciso.n 𝐼 = ( Iso ‘ 𝐶 )
7 eqid ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 )
8 1 rngccat ( 𝑈𝑉𝐶 ∈ Cat )
9 3 8 syl ( 𝜑𝐶 ∈ Cat )
10 2 7 9 4 5 6 isoval ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )
11 10 eleq2d ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )
12 2 7 9 4 5 invfun ( 𝜑 → Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )
13 funfvbrb ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )
14 12 13 syl ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )
15 1 2 3 4 5 7 rngcinv ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ↔ ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) = 𝐹 ) ) )
16 simpl ( ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) = 𝐹 ) → 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) )
17 15 16 syl6bi ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) )
18 14 17 sylbid ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) )
19 eqid 𝐹 = 𝐹
20 1 2 3 4 5 7 rngcinv ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝐹 ↔ ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ∧ 𝐹 = 𝐹 ) ) )
21 funrel ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )
22 12 21 syl ( 𝜑 → Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )
23 releldm ( ( Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝐹 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )
24 23 ex ( Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝐹𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )
25 22 24 syl ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝐹𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )
26 20 25 sylbird ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ∧ 𝐹 = 𝐹 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )
27 19 26 mpan2i ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )
28 18 27 impbid ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) )
29 11 28 bitrd ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) )