Step |
Hyp |
Ref |
Expression |
1 |
|
rngcsect.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
2 |
|
rngcsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
rngcsect.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
4 |
|
rngcsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
rngcsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
rngciso.n |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
8 |
1
|
rngccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
10 |
2 7 9 4 5 6
|
isoval |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
11 |
10
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
12 |
2 7 9 4 5
|
invfun |
⊢ ( 𝜑 → Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
13 |
|
funfvbrb |
⊢ ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
15 |
1 2 3 4 5 7
|
rngcinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ↔ ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) = ◡ 𝐹 ) ) ) |
16 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) = ◡ 𝐹 ) → 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) |
17 |
15 16
|
syl6bi |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) ) |
18 |
14 17
|
sylbid |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) ) |
19 |
|
eqid |
⊢ ◡ 𝐹 = ◡ 𝐹 |
20 |
1 2 3 4 5 7
|
rngcinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 ↔ ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ∧ ◡ 𝐹 = ◡ 𝐹 ) ) ) |
21 |
|
funrel |
⊢ ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
22 |
12 21
|
syl |
⊢ ( 𝜑 → Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
23 |
|
releldm |
⊢ ( ( Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
24 |
23
|
ex |
⊢ ( Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
25 |
22 24
|
syl |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
26 |
20 25
|
sylbird |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ∧ ◡ 𝐹 = ◡ 𝐹 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
27 |
19 26
|
mpan2i |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
28 |
18 27
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) ) |
29 |
11 28
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngIsom 𝑌 ) ) ) |