Metamath Proof Explorer


Theorem rngciso

Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020)

Ref Expression
Hypotheses rngcsect.c C=RngCatU
rngcsect.b B=BaseC
rngcsect.u φUV
rngcsect.x φXB
rngcsect.y φYB
rngciso.n I=IsoC
Assertion rngciso φFXIYFXRngIsoY

Proof

Step Hyp Ref Expression
1 rngcsect.c C=RngCatU
2 rngcsect.b B=BaseC
3 rngcsect.u φUV
4 rngcsect.x φXB
5 rngcsect.y φYB
6 rngciso.n I=IsoC
7 eqid InvC=InvC
8 1 rngccat UVCCat
9 3 8 syl φCCat
10 2 7 9 4 5 6 isoval φXIY=domXInvCY
11 10 eleq2d φFXIYFdomXInvCY
12 2 7 9 4 5 invfun φFunXInvCY
13 funfvbrb FunXInvCYFdomXInvCYFXInvCYXInvCYF
14 12 13 syl φFdomXInvCYFXInvCYXInvCYF
15 1 2 3 4 5 7 rngcinv φFXInvCYXInvCYFFXRngIsoYXInvCYF=F-1
16 simpl FXRngIsoYXInvCYF=F-1FXRngIsoY
17 15 16 syl6bi φFXInvCYXInvCYFFXRngIsoY
18 14 17 sylbid φFdomXInvCYFXRngIsoY
19 eqid F-1=F-1
20 1 2 3 4 5 7 rngcinv φFXInvCYF-1FXRngIsoYF-1=F-1
21 funrel FunXInvCYRelXInvCY
22 12 21 syl φRelXInvCY
23 releldm RelXInvCYFXInvCYF-1FdomXInvCY
24 23 ex RelXInvCYFXInvCYF-1FdomXInvCY
25 22 24 syl φFXInvCYF-1FdomXInvCY
26 20 25 sylbird φFXRngIsoYF-1=F-1FdomXInvCY
27 19 26 mpan2i φFXRngIsoYFdomXInvCY
28 18 27 impbid φFdomXInvCYFXRngIsoY
29 11 28 bitrd φFXIYFXRngIsoY