Step |
Hyp |
Ref |
Expression |
1 |
|
rngcsect.c |
|
2 |
|
rngcsect.b |
|
3 |
|
rngcsect.u |
|
4 |
|
rngcsect.x |
|
5 |
|
rngcsect.y |
|
6 |
|
rngcinv.n |
|
7 |
1
|
rngccat |
|
8 |
3 7
|
syl |
|
9 |
|
eqid |
|
10 |
2 6 8 4 5 9
|
isinv |
|
11 |
|
eqid |
|
12 |
1 2 3 4 5 11 9
|
rngcsect |
|
13 |
|
df-3an |
|
14 |
12 13
|
bitrdi |
|
15 |
|
eqid |
|
16 |
1 2 3 5 4 15 9
|
rngcsect |
|
17 |
|
3ancoma |
|
18 |
|
df-3an |
|
19 |
17 18
|
bitri |
|
20 |
16 19
|
bitrdi |
|
21 |
14 20
|
anbi12d |
|
22 |
|
anandi |
|
23 |
21 22
|
bitrdi |
|
24 |
|
simplrl |
|
25 |
24
|
adantl |
|
26 |
11 15
|
rnghmf |
|
27 |
15 11
|
rnghmf |
|
28 |
26 27
|
anim12i |
|
29 |
28
|
ad2antlr |
|
30 |
|
simpr |
|
31 |
30
|
adantl |
|
32 |
|
simpr |
|
33 |
32
|
ad2antrl |
|
34 |
29 31 33
|
jca32 |
|
35 |
34
|
adantl |
|
36 |
|
fcof1o |
|
37 |
|
eqcom |
|
38 |
37
|
anbi2i |
|
39 |
36 38
|
sylib |
|
40 |
35 39
|
syl |
|
41 |
|
anass |
|
42 |
25 40 41
|
sylanbrc |
|
43 |
11 15
|
isrngim |
|
44 |
4 5 43
|
syl2anc |
|
45 |
44
|
anbi1d |
|
46 |
45
|
adantr |
|
47 |
42 46
|
mpbird |
|
48 |
11 15
|
rngimrnghm |
|
49 |
48
|
ad2antrl |
|
50 |
|
isrngisom |
|
51 |
4 5 50
|
syl2anc |
|
52 |
|
eleq1 |
|
53 |
52
|
eqcoms |
|
54 |
53
|
anbi2d |
|
55 |
51 54
|
sylan9bbr |
|
56 |
|
simpr |
|
57 |
55 56
|
syl6bi |
|
58 |
57
|
com12 |
|
59 |
58
|
expdimp |
|
60 |
59
|
impcom |
|
61 |
|
coeq1 |
|
62 |
61
|
ad2antll |
|
63 |
11 15
|
rngimf1o |
|
64 |
63
|
ad2antrl |
|
65 |
|
f1ococnv1 |
|
66 |
64 65
|
syl |
|
67 |
62 66
|
eqtrd |
|
68 |
49 60 67
|
jca31 |
|
69 |
51
|
biimpcd |
|
70 |
69
|
adantr |
|
71 |
70
|
impcom |
|
72 |
|
eleq1 |
|
73 |
72
|
ad2antll |
|
74 |
73
|
anbi2d |
|
75 |
71 74
|
mpbird |
|
76 |
|
coeq2 |
|
77 |
76
|
ad2antll |
|
78 |
|
f1ococnv2 |
|
79 |
64 78
|
syl |
|
80 |
77 79
|
eqtrd |
|
81 |
75 67 80
|
jca31 |
|
82 |
68 75 81
|
jca31 |
|
83 |
47 82
|
impbida |
|
84 |
10 23 83
|
3bitrd |
|