| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ → - 1 ∈ ℂ ) |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
|
nndivre |
⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℕ ) → ( 2 / 𝑁 ) ∈ ℝ ) |
| 5 |
3 4
|
mpan |
⊢ ( 𝑁 ∈ ℕ → ( 2 / 𝑁 ) ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( 𝑁 ∈ ℕ → ( 2 / 𝑁 ) ∈ ℂ ) |
| 7 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 8 |
2 6 7
|
cxpmul2d |
⊢ ( 𝑁 ∈ ℕ → ( - 1 ↑𝑐 ( ( 2 / 𝑁 ) · 𝑁 ) ) = ( ( - 1 ↑𝑐 ( 2 / 𝑁 ) ) ↑ 𝑁 ) ) |
| 9 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 10 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 11 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 12 |
9 10 11
|
divcan1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 / 𝑁 ) · 𝑁 ) = 2 ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( - 1 ↑𝑐 ( ( 2 / 𝑁 ) · 𝑁 ) ) = ( - 1 ↑𝑐 2 ) ) |
| 14 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 15 |
|
cxpexp |
⊢ ( ( - 1 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( - 1 ↑𝑐 2 ) = ( - 1 ↑ 2 ) ) |
| 16 |
1 14 15
|
mp2an |
⊢ ( - 1 ↑𝑐 2 ) = ( - 1 ↑ 2 ) |
| 17 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 18 |
|
sqneg |
⊢ ( 1 ∈ ℂ → ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 19 |
17 18
|
ax-mp |
⊢ ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) |
| 20 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 21 |
16 19 20
|
3eqtri |
⊢ ( - 1 ↑𝑐 2 ) = 1 |
| 22 |
13 21
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ → ( - 1 ↑𝑐 ( ( 2 / 𝑁 ) · 𝑁 ) ) = 1 ) |
| 23 |
8 22
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑𝑐 ( 2 / 𝑁 ) ) ↑ 𝑁 ) = 1 ) |