| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rprmdvds.2 | ⊢ 𝑃  =  ( RPrime ‘ 𝑅 ) | 
						
							| 2 |  | rprmdvds.3 | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 3 |  | rprmdvds.5 | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 4 |  | rprmdvds.6 | ⊢ ( 𝜑  →  𝑄  ∈  𝑃 ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } )  =  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 6 | 4 1 | eleqtrdi | ⊢ ( 𝜑  →  𝑄  ∈  ( RPrime ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( ∥r ‘ 𝑅 )  =  ( ∥r ‘ 𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 11 | 7 2 8 9 10 | isrprm | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝑄  ∈  ( RPrime ‘ 𝑅 )  ↔  ( 𝑄  ∈  ( ( Base ‘ 𝑅 )  ∖  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } ) )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝑄 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  →  ( 𝑄 ( ∥r ‘ 𝑅 ) 𝑥  ∨  𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) ) ) ) ) | 
						
							| 12 | 11 | simprbda | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑄  ∈  ( RPrime ‘ 𝑅 ) )  →  𝑄  ∈  ( ( Base ‘ 𝑅 )  ∖  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 13 | 3 6 12 | syl2anc | ⊢ ( 𝜑  →  𝑄  ∈  ( ( Base ‘ 𝑅 )  ∖  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 14 | 13 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑄  ∈  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 15 |  | nelun | ⊢ ( ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } )  =  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } )  →  ( ¬  𝑄  ∈  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } )  ↔  ( ¬  𝑄  ∈  𝑈  ∧  ¬  𝑄  ∈  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 16 | 15 | simprbda | ⊢ ( ( ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } )  =  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } )  ∧  ¬  𝑄  ∈  ( 𝑈  ∪  { ( 0g ‘ 𝑅 ) } ) )  →  ¬  𝑄  ∈  𝑈 ) | 
						
							| 17 | 5 14 16 | syl2anc | ⊢ ( 𝜑  →  ¬  𝑄  ∈  𝑈 ) |