| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rsprprmprmidl.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 2 |
|
rsprprmprmidl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 3 |
|
rsprprmprmidl.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RPrime ‘ 𝑅 ) ) |
| 4 |
2
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( RPrime ‘ 𝑅 ) = ( RPrime ‘ 𝑅 ) |
| 7 |
5 6 2 3
|
rprmcl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝑅 ) ) |
| 8 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑃 } ⊆ ( Base ‘ 𝑅 ) ) |
| 9 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 10 |
1 5 9
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑃 } ⊆ ( Base ‘ 𝑅 ) ) → ( 𝐾 ‘ { 𝑃 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 11 |
4 8 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑃 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 13 |
5 12
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 14 |
4 13
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 16 |
6 15 2 3
|
rprmnunit |
⊢ ( 𝜑 → ¬ 𝑃 ∈ ( Unit ‘ 𝑅 ) ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → 𝑅 ∈ CRing ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑃 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → 𝑃 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 19 |
15 12
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 22 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 23 |
15 22
|
dvdsunit |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑃 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑃 ∈ ( Unit ‘ 𝑅 ) ) |
| 24 |
17 18 21 23
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑃 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → 𝑃 ∈ ( Unit ‘ 𝑅 ) ) |
| 25 |
16 24
|
mtand |
⊢ ( 𝜑 → ¬ 𝑃 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 26 |
5 1 22 4 7
|
ellpi |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ↔ 𝑃 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 27 |
25 26
|
mtbird |
⊢ ( 𝜑 → ¬ ( 1r ‘ 𝑅 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) |
| 28 |
|
nelne1 |
⊢ ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ¬ ( 1r ‘ 𝑅 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → ( Base ‘ 𝑅 ) ≠ ( 𝐾 ‘ { 𝑃 } ) ) |
| 29 |
14 27 28
|
syl2anc |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ≠ ( 𝐾 ‘ { 𝑃 } ) ) |
| 30 |
29
|
necomd |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑃 } ) ≠ ( Base ‘ 𝑅 ) ) |
| 31 |
5 1 22 4 7
|
ellpi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ↔ 𝑃 ( ∥r ‘ 𝑅 ) 𝑥 ) ) |
| 32 |
31
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ↔ 𝑃 ( ∥r ‘ 𝑅 ) 𝑥 ) ) |
| 33 |
32
|
biimpar |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) ∧ 𝑃 ( ∥r ‘ 𝑅 ) 𝑥 ) → 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ) |
| 34 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → 𝑅 ∈ Ring ) |
| 36 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑃 ∈ ( Base ‘ 𝑅 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → 𝑃 ∈ ( Base ‘ 𝑅 ) ) |
| 38 |
5 1 22 35 37
|
ellpi |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → ( 𝑦 ∈ ( 𝐾 ‘ { 𝑃 } ) ↔ 𝑃 ( ∥r ‘ 𝑅 ) 𝑦 ) ) |
| 39 |
38
|
biimpar |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) ∧ 𝑃 ( ∥r ‘ 𝑅 ) 𝑦 ) → 𝑦 ∈ ( 𝐾 ‘ { 𝑃 } ) ) |
| 40 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 41 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → 𝑅 ∈ CRing ) |
| 42 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → 𝑃 ∈ ( RPrime ‘ 𝑅 ) ) |
| 43 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 44 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 45 |
5 1 22 34 36
|
ellpi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ↔ 𝑃 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 46 |
45
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → 𝑃 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 47 |
5 6 22 40 41 42 43 44 46
|
rprmdvds |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → ( 𝑃 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑃 ( ∥r ‘ 𝑅 ) 𝑦 ) ) |
| 48 |
33 39 47
|
orim12da |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ∨ 𝑦 ∈ ( 𝐾 ‘ { 𝑃 } ) ) ) |
| 49 |
48
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ∨ 𝑦 ∈ ( 𝐾 ‘ { 𝑃 } ) ) ) ) |
| 50 |
49
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ∨ 𝑦 ∈ ( 𝐾 ‘ { 𝑃 } ) ) ) ) |
| 51 |
50
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ∨ 𝑦 ∈ ( 𝐾 ‘ { 𝑃 } ) ) ) ) |
| 52 |
5 40
|
isprmidlc |
⊢ ( 𝑅 ∈ CRing → ( ( 𝐾 ‘ { 𝑃 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ↔ ( ( 𝐾 ‘ { 𝑃 } ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 𝐾 ‘ { 𝑃 } ) ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ∨ 𝑦 ∈ ( 𝐾 ‘ { 𝑃 } ) ) ) ) ) ) |
| 53 |
52
|
biimpar |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ( 𝐾 ‘ { 𝑃 } ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 𝐾 ‘ { 𝑃 } ) ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐾 ‘ { 𝑃 } ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑃 } ) ∨ 𝑦 ∈ ( 𝐾 ‘ { 𝑃 } ) ) ) ) ) → ( 𝐾 ‘ { 𝑃 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 54 |
2 11 30 51 53
|
syl13anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑃 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) |