| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rsprprmprmidl.k |
|- K = ( RSpan ` R ) |
| 2 |
|
rsprprmprmidl.r |
|- ( ph -> R e. CRing ) |
| 3 |
|
rsprprmprmidl.p |
|- ( ph -> P e. ( RPrime ` R ) ) |
| 4 |
2
|
crngringd |
|- ( ph -> R e. Ring ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
|
eqid |
|- ( RPrime ` R ) = ( RPrime ` R ) |
| 7 |
5 6 2 3
|
rprmcl |
|- ( ph -> P e. ( Base ` R ) ) |
| 8 |
7
|
snssd |
|- ( ph -> { P } C_ ( Base ` R ) ) |
| 9 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 10 |
1 5 9
|
rspcl |
|- ( ( R e. Ring /\ { P } C_ ( Base ` R ) ) -> ( K ` { P } ) e. ( LIdeal ` R ) ) |
| 11 |
4 8 10
|
syl2anc |
|- ( ph -> ( K ` { P } ) e. ( LIdeal ` R ) ) |
| 12 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 13 |
5 12
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 14 |
4 13
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 15 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 16 |
6 15 2 3
|
rprmnunit |
|- ( ph -> -. P e. ( Unit ` R ) ) |
| 17 |
2
|
adantr |
|- ( ( ph /\ P ( ||r ` R ) ( 1r ` R ) ) -> R e. CRing ) |
| 18 |
|
simpr |
|- ( ( ph /\ P ( ||r ` R ) ( 1r ` R ) ) -> P ( ||r ` R ) ( 1r ` R ) ) |
| 19 |
15 12
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 20 |
4 19
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ P ( ||r ` R ) ( 1r ` R ) ) -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 22 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 23 |
15 22
|
dvdsunit |
|- ( ( R e. CRing /\ P ( ||r ` R ) ( 1r ` R ) /\ ( 1r ` R ) e. ( Unit ` R ) ) -> P e. ( Unit ` R ) ) |
| 24 |
17 18 21 23
|
syl3anc |
|- ( ( ph /\ P ( ||r ` R ) ( 1r ` R ) ) -> P e. ( Unit ` R ) ) |
| 25 |
16 24
|
mtand |
|- ( ph -> -. P ( ||r ` R ) ( 1r ` R ) ) |
| 26 |
5 1 22 4 7
|
ellpi |
|- ( ph -> ( ( 1r ` R ) e. ( K ` { P } ) <-> P ( ||r ` R ) ( 1r ` R ) ) ) |
| 27 |
25 26
|
mtbird |
|- ( ph -> -. ( 1r ` R ) e. ( K ` { P } ) ) |
| 28 |
|
nelne1 |
|- ( ( ( 1r ` R ) e. ( Base ` R ) /\ -. ( 1r ` R ) e. ( K ` { P } ) ) -> ( Base ` R ) =/= ( K ` { P } ) ) |
| 29 |
14 27 28
|
syl2anc |
|- ( ph -> ( Base ` R ) =/= ( K ` { P } ) ) |
| 30 |
29
|
necomd |
|- ( ph -> ( K ` { P } ) =/= ( Base ` R ) ) |
| 31 |
5 1 22 4 7
|
ellpi |
|- ( ph -> ( x e. ( K ` { P } ) <-> P ( ||r ` R ) x ) ) |
| 32 |
31
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> ( x e. ( K ` { P } ) <-> P ( ||r ` R ) x ) ) |
| 33 |
32
|
biimpar |
|- ( ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) /\ P ( ||r ` R ) x ) -> x e. ( K ` { P } ) ) |
| 34 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> R e. Ring ) |
| 35 |
34
|
adantr |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> R e. Ring ) |
| 36 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> P e. ( Base ` R ) ) |
| 37 |
36
|
adantr |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> P e. ( Base ` R ) ) |
| 38 |
5 1 22 35 37
|
ellpi |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> ( y e. ( K ` { P } ) <-> P ( ||r ` R ) y ) ) |
| 39 |
38
|
biimpar |
|- ( ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) /\ P ( ||r ` R ) y ) -> y e. ( K ` { P } ) ) |
| 40 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 41 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> R e. CRing ) |
| 42 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> P e. ( RPrime ` R ) ) |
| 43 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> x e. ( Base ` R ) ) |
| 44 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> y e. ( Base ` R ) ) |
| 45 |
5 1 22 34 36
|
ellpi |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) e. ( K ` { P } ) <-> P ( ||r ` R ) ( x ( .r ` R ) y ) ) ) |
| 46 |
45
|
biimpa |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> P ( ||r ` R ) ( x ( .r ` R ) y ) ) |
| 47 |
5 6 22 40 41 42 43 44 46
|
rprmdvds |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> ( P ( ||r ` R ) x \/ P ( ||r ` R ) y ) ) |
| 48 |
33 39 47
|
orim12da |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) e. ( K ` { P } ) ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) |
| 49 |
48
|
ex |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) |
| 50 |
49
|
anasss |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) |
| 51 |
50
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) |
| 52 |
5 40
|
isprmidlc |
|- ( R e. CRing -> ( ( K ` { P } ) e. ( PrmIdeal ` R ) <-> ( ( K ` { P } ) e. ( LIdeal ` R ) /\ ( K ` { P } ) =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) ) ) |
| 53 |
52
|
biimpar |
|- ( ( R e. CRing /\ ( ( K ` { P } ) e. ( LIdeal ` R ) /\ ( K ` { P } ) =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. ( K ` { P } ) -> ( x e. ( K ` { P } ) \/ y e. ( K ` { P } ) ) ) ) ) -> ( K ` { P } ) e. ( PrmIdeal ` R ) ) |
| 54 |
2 11 30 51 53
|
syl13anc |
|- ( ph -> ( K ` { P } ) e. ( PrmIdeal ` R ) ) |