| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmnz.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
| 2 |
|
rprmnz.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
rprmnz.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 4 |
|
rprmnz.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) = ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) |
| 6 |
4 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑄 ∈ ( RPrime ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 11 |
7 8 2 9 10
|
isrprm |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑄 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑄 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) → ( 𝑄 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑄 ( ∥r ‘ 𝑅 ) 𝑦 ) ) ) ) ) |
| 12 |
11
|
simprbda |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑄 ∈ ( RPrime ‘ 𝑅 ) ) → 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) ) |
| 13 |
3 6 12
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) ) |
| 14 |
13
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑄 ∈ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) |
| 15 |
|
nelun |
⊢ ( ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) = ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) → ( ¬ 𝑄 ∈ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ↔ ( ¬ 𝑄 ∈ ( Unit ‘ 𝑅 ) ∧ ¬ 𝑄 ∈ { 0 } ) ) ) |
| 16 |
15
|
simplbda |
⊢ ( ( ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) = ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ∧ ¬ 𝑄 ∈ ( ( Unit ‘ 𝑅 ) ∪ { 0 } ) ) → ¬ 𝑄 ∈ { 0 } ) |
| 17 |
5 14 16
|
syl2anc |
⊢ ( 𝜑 → ¬ 𝑄 ∈ { 0 } ) |
| 18 |
|
elsng |
⊢ ( 𝑄 ∈ 𝑃 → ( 𝑄 ∈ { 0 } ↔ 𝑄 = 0 ) ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ { 0 } ↔ 𝑄 = 0 ) ) |
| 20 |
19
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ 𝑄 ∈ { 0 } ↔ 𝑄 ≠ 0 ) ) |
| 21 |
17 20
|
mpbid |
⊢ ( 𝜑 → 𝑄 ≠ 0 ) |