| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbthlem.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sbthlem.2 |
⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } |
| 3 |
|
sbthlem.3 |
⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 4 |
|
funres |
⊢ ( Fun 𝑓 → Fun ( 𝑓 ↾ ∪ 𝐷 ) ) |
| 5 |
|
funres |
⊢ ( Fun ◡ 𝑔 → Fun ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 6 |
|
dmres |
⊢ dom ( 𝑓 ↾ ∪ 𝐷 ) = ( ∪ 𝐷 ∩ dom 𝑓 ) |
| 7 |
|
inss1 |
⊢ ( ∪ 𝐷 ∩ dom 𝑓 ) ⊆ ∪ 𝐷 |
| 8 |
6 7
|
eqsstri |
⊢ dom ( 𝑓 ↾ ∪ 𝐷 ) ⊆ ∪ 𝐷 |
| 9 |
|
ssrin |
⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ⊆ ∪ 𝐷 → ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 11 |
|
dmres |
⊢ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ dom ◡ 𝑔 ) |
| 12 |
|
inss1 |
⊢ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ dom ◡ 𝑔 ) ⊆ ( 𝐴 ∖ ∪ 𝐷 ) |
| 13 |
11 12
|
eqsstri |
⊢ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ⊆ ( 𝐴 ∖ ∪ 𝐷 ) |
| 14 |
|
sslin |
⊢ ( dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ⊆ ( 𝐴 ∖ ∪ 𝐷 ) → ( ∪ 𝐷 ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( ∪ 𝐷 ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ ( 𝐴 ∖ ∪ 𝐷 ) ) |
| 16 |
10 15
|
sstri |
⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ( ∪ 𝐷 ∩ ( 𝐴 ∖ ∪ 𝐷 ) ) |
| 17 |
|
disjdif |
⊢ ( ∪ 𝐷 ∩ ( 𝐴 ∖ ∪ 𝐷 ) ) = ∅ |
| 18 |
16 17
|
sseqtri |
⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ∅ |
| 19 |
|
ss0 |
⊢ ( ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ⊆ ∅ → ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ ) |
| 20 |
18 19
|
ax-mp |
⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ |
| 21 |
|
funun |
⊢ ( ( ( Fun ( 𝑓 ↾ ∪ 𝐷 ) ∧ Fun ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ∧ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∩ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ∅ ) → Fun ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 22 |
20 21
|
mpan2 |
⊢ ( ( Fun ( 𝑓 ↾ ∪ 𝐷 ) ∧ Fun ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) → Fun ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 23 |
4 5 22
|
syl2an |
⊢ ( ( Fun 𝑓 ∧ Fun ◡ 𝑔 ) → Fun ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 24 |
3
|
funeqi |
⊢ ( Fun 𝐻 ↔ Fun ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ) |
| 25 |
23 24
|
sylibr |
⊢ ( ( Fun 𝑓 ∧ Fun ◡ 𝑔 ) → Fun 𝐻 ) |