Metamath Proof Explorer


Theorem setrecseq

Description: Equality theorem for set recursion. (Contributed by Emmett Weisz, 17-Feb-2021)

Ref Expression
Assertion setrecseq ( 𝐹 = 𝐺 → setrecs ( 𝐹 ) = setrecs ( 𝐺 ) )

Proof

Step Hyp Ref Expression
1 fveq1 ( 𝐹 = 𝐺 → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) )
2 1 sseq1d ( 𝐹 = 𝐺 → ( ( 𝐹𝑤 ) ⊆ 𝑧 ↔ ( 𝐺𝑤 ) ⊆ 𝑧 ) )
3 2 imbi2d ( 𝐹 = 𝐺 → ( ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ↔ ( 𝑤𝑧 → ( 𝐺𝑤 ) ⊆ 𝑧 ) ) )
4 3 imbi2d ( 𝐹 = 𝐺 → ( ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) ↔ ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐺𝑤 ) ⊆ 𝑧 ) ) ) )
5 4 albidv ( 𝐹 = 𝐺 → ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) ↔ ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐺𝑤 ) ⊆ 𝑧 ) ) ) )
6 5 imbi1d ( 𝐹 = 𝐺 → ( ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) ↔ ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐺𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) ) )
7 6 albidv ( 𝐹 = 𝐺 → ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐺𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) ) )
8 7 abbidv ( 𝐹 = 𝐺 → { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) } = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐺𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) } )
9 8 unieqd ( 𝐹 = 𝐺 { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) } = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐺𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) } )
10 df-setrecs setrecs ( 𝐹 ) = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
11 df-setrecs setrecs ( 𝐺 ) = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐺𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
12 9 10 11 3eqtr4g ( 𝐹 = 𝐺 → setrecs ( 𝐹 ) = setrecs ( 𝐺 ) )