| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝐹  =  𝐺  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 2 | 1 | sseq1d | ⊢ ( 𝐹  =  𝐺  →  ( ( 𝐹 ‘ 𝑤 )  ⊆  𝑧  ↔  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) ) | 
						
							| 3 | 2 | imbi2d | ⊢ ( 𝐹  =  𝐺  →  ( ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 )  ↔  ( 𝑤  ⊆  𝑧  →  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝐹  =  𝐺  →  ( ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  ↔  ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) ) ) ) | 
						
							| 5 | 4 | albidv | ⊢ ( 𝐹  =  𝐺  →  ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  ↔  ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) ) ) ) | 
						
							| 6 | 5 | imbi1d | ⊢ ( 𝐹  =  𝐺  →  ( ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 )  ↔  ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) ) ) | 
						
							| 7 | 6 | albidv | ⊢ ( 𝐹  =  𝐺  →  ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 )  ↔  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) ) ) | 
						
							| 8 | 7 | abbidv | ⊢ ( 𝐹  =  𝐺  →  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) }  =  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } ) | 
						
							| 9 | 8 | unieqd | ⊢ ( 𝐹  =  𝐺  →  ∪  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) }  =  ∪  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } ) | 
						
							| 10 |  | df-setrecs | ⊢ setrecs ( 𝐹 )  =  ∪  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } | 
						
							| 11 |  | df-setrecs | ⊢ setrecs ( 𝐺 )  =  ∪  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐺 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } | 
						
							| 12 | 9 10 11 | 3eqtr4g | ⊢ ( 𝐹  =  𝐺  →  setrecs ( 𝐹 )  =  setrecs ( 𝐺 ) ) |