Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Emmett Weisz
Set Recursion
Basic Properties of Set Recursion
setrecseq
Next ⟩
nfsetrecs
Metamath Proof Explorer
Ascii
Unicode
Theorem
setrecseq
Description:
Equality theorem for set recursion.
(Contributed by
Emmett Weisz
, 17-Feb-2021)
Ref
Expression
Assertion
setrecseq
⊢
F
=
G
→
setrecs
⁡
F
=
setrecs
⁡
G
Proof
Step
Hyp
Ref
Expression
1
fveq1
⊢
F
=
G
→
F
⁡
w
=
G
⁡
w
2
1
sseq1d
⊢
F
=
G
→
F
⁡
w
⊆
z
↔
G
⁡
w
⊆
z
3
2
imbi2d
⊢
F
=
G
→
w
⊆
z
→
F
⁡
w
⊆
z
↔
w
⊆
z
→
G
⁡
w
⊆
z
4
3
imbi2d
⊢
F
=
G
→
w
⊆
y
→
w
⊆
z
→
F
⁡
w
⊆
z
↔
w
⊆
y
→
w
⊆
z
→
G
⁡
w
⊆
z
5
4
albidv
⊢
F
=
G
→
∀
w
w
⊆
y
→
w
⊆
z
→
F
⁡
w
⊆
z
↔
∀
w
w
⊆
y
→
w
⊆
z
→
G
⁡
w
⊆
z
6
5
imbi1d
⊢
F
=
G
→
∀
w
w
⊆
y
→
w
⊆
z
→
F
⁡
w
⊆
z
→
y
⊆
z
↔
∀
w
w
⊆
y
→
w
⊆
z
→
G
⁡
w
⊆
z
→
y
⊆
z
7
6
albidv
⊢
F
=
G
→
∀
z
∀
w
w
⊆
y
→
w
⊆
z
→
F
⁡
w
⊆
z
→
y
⊆
z
↔
∀
z
∀
w
w
⊆
y
→
w
⊆
z
→
G
⁡
w
⊆
z
→
y
⊆
z
8
7
abbidv
⊢
F
=
G
→
y
|
∀
z
∀
w
w
⊆
y
→
w
⊆
z
→
F
⁡
w
⊆
z
→
y
⊆
z
=
y
|
∀
z
∀
w
w
⊆
y
→
w
⊆
z
→
G
⁡
w
⊆
z
→
y
⊆
z
9
8
unieqd
⊢
F
=
G
→
⋃
y
|
∀
z
∀
w
w
⊆
y
→
w
⊆
z
→
F
⁡
w
⊆
z
→
y
⊆
z
=
⋃
y
|
∀
z
∀
w
w
⊆
y
→
w
⊆
z
→
G
⁡
w
⊆
z
→
y
⊆
z
10
df-setrecs
⊢
setrecs
⁡
F
=
⋃
y
|
∀
z
∀
w
w
⊆
y
→
w
⊆
z
→
F
⁡
w
⊆
z
→
y
⊆
z
11
df-setrecs
⊢
setrecs
⁡
G
=
⋃
y
|
∀
z
∀
w
w
⊆
y
→
w
⊆
z
→
G
⁡
w
⊆
z
→
y
⊆
z
12
9
10
11
3eqtr4g
⊢
F
=
G
→
setrecs
⁡
F
=
setrecs
⁡
G