| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 |  |-  ( F = G -> ( F ` w ) = ( G ` w ) ) | 
						
							| 2 | 1 | sseq1d |  |-  ( F = G -> ( ( F ` w ) C_ z <-> ( G ` w ) C_ z ) ) | 
						
							| 3 | 2 | imbi2d |  |-  ( F = G -> ( ( w C_ z -> ( F ` w ) C_ z ) <-> ( w C_ z -> ( G ` w ) C_ z ) ) ) | 
						
							| 4 | 3 | imbi2d |  |-  ( F = G -> ( ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) <-> ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) ) ) | 
						
							| 5 | 4 | albidv |  |-  ( F = G -> ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) <-> A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) ) ) | 
						
							| 6 | 5 | imbi1d |  |-  ( F = G -> ( ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) <-> ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) ) ) | 
						
							| 7 | 6 | albidv |  |-  ( F = G -> ( A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) <-> A. z ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) ) ) | 
						
							| 8 | 7 | abbidv |  |-  ( F = G -> { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } = { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) } ) | 
						
							| 9 | 8 | unieqd |  |-  ( F = G -> U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) } ) | 
						
							| 10 |  | df-setrecs |  |-  setrecs ( F ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } | 
						
							| 11 |  | df-setrecs |  |-  setrecs ( G ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) } | 
						
							| 12 | 9 10 11 | 3eqtr4g |  |-  ( F = G -> setrecs ( F ) = setrecs ( G ) ) |