Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
|- ( F = G -> ( F ` w ) = ( G ` w ) ) |
2 |
1
|
sseq1d |
|- ( F = G -> ( ( F ` w ) C_ z <-> ( G ` w ) C_ z ) ) |
3 |
2
|
imbi2d |
|- ( F = G -> ( ( w C_ z -> ( F ` w ) C_ z ) <-> ( w C_ z -> ( G ` w ) C_ z ) ) ) |
4 |
3
|
imbi2d |
|- ( F = G -> ( ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) <-> ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) ) ) |
5 |
4
|
albidv |
|- ( F = G -> ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) <-> A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) ) ) |
6 |
5
|
imbi1d |
|- ( F = G -> ( ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) <-> ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) ) ) |
7 |
6
|
albidv |
|- ( F = G -> ( A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) <-> A. z ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) ) ) |
8 |
7
|
abbidv |
|- ( F = G -> { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } = { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) } ) |
9 |
8
|
unieqd |
|- ( F = G -> U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) } ) |
10 |
|
df-setrecs |
|- setrecs ( F ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
11 |
|
df-setrecs |
|- setrecs ( G ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( G ` w ) C_ z ) ) -> y C_ z ) } |
12 |
9 10 11
|
3eqtr4g |
|- ( F = G -> setrecs ( F ) = setrecs ( G ) ) |