Metamath Proof Explorer


Theorem sitgclre

Description: Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
sitgclre.1 ( 𝜑𝑊 ∈ Ban )
sitgclre.3 ( 𝜑 → ( Scalar ‘ 𝑊 ) = ℝfld )
Assertion sitgclre ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
10 sitgclre.1 ( 𝜑𝑊 ∈ Ban )
11 sitgclre.3 ( 𝜑 → ( Scalar ‘ 𝑊 ) = ℝfld )
12 rerrext fld ∈ ℝExt
13 11 12 eqeltrdi ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ ℝExt )
14 1 2 3 4 5 6 7 8 9 10 13 sitgclbn ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) ∈ 𝐵 )