| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | sitgval.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | sitgval.s | ⊢ 𝑆  =  ( sigaGen ‘ 𝐽 ) | 
						
							| 4 |  | sitgval.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | sitgval.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | sitgval.h | ⊢ 𝐻  =  ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | sitgval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 8 |  | sitgval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 9 |  | sitg0.1 | ⊢ ( 𝜑  →  𝑊  ∈  TopSp ) | 
						
							| 10 |  | sitg0.2 | ⊢ ( 𝜑  →  𝑊  ∈  Mnd ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | sibf0 | ⊢ ( 𝜑  →  ( ∪  dom  𝑀  ×  {  0  } )  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 11 | sitgfval | ⊢ ( 𝜑  →  ( ( 𝑊 sitg 𝑀 ) ‘ ( ∪  dom  𝑀  ×  {  0  } ) )  =  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) | 
						
							| 13 |  | rnxpss | ⊢ ran  ( ∪  dom  𝑀  ×  {  0  } )  ⊆  {  0  } | 
						
							| 14 |  | ssdif0 | ⊢ ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ⊆  {  0  }  ↔  ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  =  ∅ ) | 
						
							| 15 | 13 14 | mpbi | ⊢ ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  =  ∅ | 
						
							| 16 |  | mpteq1 | ⊢ ( ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  =  ∅  →  ( 𝑥  ∈  ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) )  =  ( 𝑥  ∈  ∅  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( 𝑥  ∈  ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) )  =  ( 𝑥  ∈  ∅  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) ) | 
						
							| 18 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) )  =  ∅ | 
						
							| 19 | 17 18 | eqtri | ⊢ ( 𝑥  ∈  ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) )  =  ∅ | 
						
							| 20 | 19 | oveq2i | ⊢ ( 𝑊  Σg  ( 𝑥  ∈  ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  =  ( 𝑊  Σg  ∅ ) | 
						
							| 21 | 4 | gsum0 | ⊢ ( 𝑊  Σg  ∅ )  =   0 | 
						
							| 22 | 20 21 | eqtri | ⊢ ( 𝑊  Σg  ( 𝑥  ∈  ( ran  ( ∪  dom  𝑀  ×  {  0  } )  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ ( ∪  dom  𝑀  ×  {  0  } )  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  =   0 | 
						
							| 23 | 12 22 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑊 sitg 𝑀 ) ‘ ( ∪  dom  𝑀  ×  {  0  } ) )  =   0  ) |