Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
9 |
|
sitgf.1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ) → ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 ) ∈ 𝐵 ) |
10 |
|
funmpt |
⊢ Fun ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) |
11 |
1 2 3 4 5 6 7 8
|
sitgval |
⊢ ( 𝜑 → ( 𝑊 sitg 𝑀 ) = ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) ) |
12 |
11
|
funeqd |
⊢ ( 𝜑 → ( Fun ( 𝑊 sitg 𝑀 ) ↔ Fun ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) ) ) |
13 |
10 12
|
mpbiri |
⊢ ( 𝜑 → Fun ( 𝑊 sitg 𝑀 ) ) |
14 |
13
|
funfnd |
⊢ ( 𝜑 → ( 𝑊 sitg 𝑀 ) Fn dom ( 𝑊 sitg 𝑀 ) ) |
15 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 ) ∈ 𝐵 ) |
16 |
|
fnfvrnss |
⊢ ( ( ( 𝑊 sitg 𝑀 ) Fn dom ( 𝑊 sitg 𝑀 ) ∧ ∀ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 ) ∈ 𝐵 ) → ran ( 𝑊 sitg 𝑀 ) ⊆ 𝐵 ) |
17 |
14 15 16
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑊 sitg 𝑀 ) ⊆ 𝐵 ) |
18 |
|
df-f |
⊢ ( ( 𝑊 sitg 𝑀 ) : dom ( 𝑊 sitg 𝑀 ) ⟶ 𝐵 ↔ ( ( 𝑊 sitg 𝑀 ) Fn dom ( 𝑊 sitg 𝑀 ) ∧ ran ( 𝑊 sitg 𝑀 ) ⊆ 𝐵 ) ) |
19 |
14 17 18
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑊 sitg 𝑀 ) : dom ( 𝑊 sitg 𝑀 ) ⟶ 𝐵 ) |