| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | sitgval.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | sitgval.s | ⊢ 𝑆  =  ( sigaGen ‘ 𝐽 ) | 
						
							| 4 |  | sitgval.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | sitgval.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | sitgval.h | ⊢ 𝐻  =  ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | sitgval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 8 |  | sitgval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 9 |  | sitgf.1 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) )  →  ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 )  ∈  𝐵 ) | 
						
							| 10 |  | funmpt | ⊢ Fun  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | sitgval | ⊢ ( 𝜑  →  ( 𝑊 sitg 𝑀 )  =  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) ) | 
						
							| 12 | 11 | funeqd | ⊢ ( 𝜑  →  ( Fun  ( 𝑊 sitg 𝑀 )  ↔  Fun  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) ) ) | 
						
							| 13 | 10 12 | mpbiri | ⊢ ( 𝜑  →  Fun  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 14 | 13 | funfnd | ⊢ ( 𝜑  →  ( 𝑊 sitg 𝑀 )  Fn  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 15 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 )  ∈  𝐵 ) | 
						
							| 16 |  | fnfvrnss | ⊢ ( ( ( 𝑊 sitg 𝑀 )  Fn  dom  ( 𝑊 sitg 𝑀 )  ∧  ∀ 𝑓  ∈  dom  ( 𝑊 sitg 𝑀 ) ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 )  ∈  𝐵 )  →  ran  ( 𝑊 sitg 𝑀 )  ⊆  𝐵 ) | 
						
							| 17 | 14 15 16 | syl2anc | ⊢ ( 𝜑  →  ran  ( 𝑊 sitg 𝑀 )  ⊆  𝐵 ) | 
						
							| 18 |  | df-f | ⊢ ( ( 𝑊 sitg 𝑀 ) : dom  ( 𝑊 sitg 𝑀 ) ⟶ 𝐵  ↔  ( ( 𝑊 sitg 𝑀 )  Fn  dom  ( 𝑊 sitg 𝑀 )  ∧  ran  ( 𝑊 sitg 𝑀 )  ⊆  𝐵 ) ) | 
						
							| 19 | 14 17 18 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑊 sitg 𝑀 ) : dom  ( 𝑊 sitg 𝑀 ) ⟶ 𝐵 ) |