Metamath Proof Explorer


Theorem sitgf

Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
sitgf.1 ( ( 𝜑𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ) → ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 ) ∈ 𝐵 )
Assertion sitgf ( 𝜑 → ( 𝑊 sitg 𝑀 ) : dom ( 𝑊 sitg 𝑀 ) ⟶ 𝐵 )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 sitgf.1 ( ( 𝜑𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ) → ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 ) ∈ 𝐵 )
10 funmpt Fun ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) )
11 1 2 3 4 5 6 7 8 sitgval ( 𝜑 → ( 𝑊 sitg 𝑀 ) = ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) )
12 11 funeqd ( 𝜑 → ( Fun ( 𝑊 sitg 𝑀 ) ↔ Fun ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) ) )
13 10 12 mpbiri ( 𝜑 → Fun ( 𝑊 sitg 𝑀 ) )
14 13 funfnd ( 𝜑 → ( 𝑊 sitg 𝑀 ) Fn dom ( 𝑊 sitg 𝑀 ) )
15 9 ralrimiva ( 𝜑 → ∀ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 ) ∈ 𝐵 )
16 fnfvrnss ( ( ( 𝑊 sitg 𝑀 ) Fn dom ( 𝑊 sitg 𝑀 ) ∧ ∀ 𝑓 ∈ dom ( 𝑊 sitg 𝑀 ) ( ( 𝑊 sitg 𝑀 ) ‘ 𝑓 ) ∈ 𝐵 ) → ran ( 𝑊 sitg 𝑀 ) ⊆ 𝐵 )
17 14 15 16 syl2anc ( 𝜑 → ran ( 𝑊 sitg 𝑀 ) ⊆ 𝐵 )
18 df-f ( ( 𝑊 sitg 𝑀 ) : dom ( 𝑊 sitg 𝑀 ) ⟶ 𝐵 ↔ ( ( 𝑊 sitg 𝑀 ) Fn dom ( 𝑊 sitg 𝑀 ) ∧ ran ( 𝑊 sitg 𝑀 ) ⊆ 𝐵 ) )
19 14 17 18 sylanbrc ( 𝜑 → ( 𝑊 sitg 𝑀 ) : dom ( 𝑊 sitg 𝑀 ) ⟶ 𝐵 )