Metamath Proof Explorer


Theorem sitgf

Description: The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
sitgf.1 φ f M W W f dM B
Assertion sitgf φ W sitg M : M W B

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 sitgf.1 φ f M W W f dM B
10 funmpt Fun f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x
11 1 2 3 4 5 6 7 8 sitgval φ W sitg M = f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x
12 11 funeqd φ Fun W sitg M Fun f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x
13 10 12 mpbiri φ Fun W sitg M
14 13 funfnd φ W sitg M Fn M W
15 9 ralrimiva φ f M W W f dM B
16 fnfvrnss W sitg M Fn M W f M W W f dM B ran W sitg M B
17 14 15 16 syl2anc φ ran W sitg M B
18 df-f W sitg M : M W B W sitg M Fn M W ran W sitg M B
19 14 17 18 sylanbrc φ W sitg M : M W B