Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
|- B = ( Base ` W ) |
2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
9 |
|
sitgf.1 |
|- ( ( ph /\ f e. dom ( W sitg M ) ) -> ( ( W sitg M ) ` f ) e. B ) |
10 |
|
funmpt |
|- Fun ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) |
11 |
1 2 3 4 5 6 7 8
|
sitgval |
|- ( ph -> ( W sitg M ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) |
12 |
11
|
funeqd |
|- ( ph -> ( Fun ( W sitg M ) <-> Fun ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) ) |
13 |
10 12
|
mpbiri |
|- ( ph -> Fun ( W sitg M ) ) |
14 |
13
|
funfnd |
|- ( ph -> ( W sitg M ) Fn dom ( W sitg M ) ) |
15 |
9
|
ralrimiva |
|- ( ph -> A. f e. dom ( W sitg M ) ( ( W sitg M ) ` f ) e. B ) |
16 |
|
fnfvrnss |
|- ( ( ( W sitg M ) Fn dom ( W sitg M ) /\ A. f e. dom ( W sitg M ) ( ( W sitg M ) ` f ) e. B ) -> ran ( W sitg M ) C_ B ) |
17 |
14 15 16
|
syl2anc |
|- ( ph -> ran ( W sitg M ) C_ B ) |
18 |
|
df-f |
|- ( ( W sitg M ) : dom ( W sitg M ) --> B <-> ( ( W sitg M ) Fn dom ( W sitg M ) /\ ran ( W sitg M ) C_ B ) ) |
19 |
14 17 18
|
sylanbrc |
|- ( ph -> ( W sitg M ) : dom ( W sitg M ) --> B ) |