| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | sitgval.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | sitgval.s |  |-  S = ( sigaGen ` J ) | 
						
							| 4 |  | sitgval.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | sitgval.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | sitgval.h |  |-  H = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 7 |  | sitgval.1 |  |-  ( ph -> W e. V ) | 
						
							| 8 |  | sitgval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 9 |  | sitgf.1 |  |-  ( ( ph /\ f e. dom ( W sitg M ) ) -> ( ( W sitg M ) ` f ) e. B ) | 
						
							| 10 |  | funmpt |  |-  Fun ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | sitgval |  |-  ( ph -> ( W sitg M ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) | 
						
							| 12 | 11 | funeqd |  |-  ( ph -> ( Fun ( W sitg M ) <-> Fun ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) ) | 
						
							| 13 | 10 12 | mpbiri |  |-  ( ph -> Fun ( W sitg M ) ) | 
						
							| 14 | 13 | funfnd |  |-  ( ph -> ( W sitg M ) Fn dom ( W sitg M ) ) | 
						
							| 15 | 9 | ralrimiva |  |-  ( ph -> A. f e. dom ( W sitg M ) ( ( W sitg M ) ` f ) e. B ) | 
						
							| 16 |  | fnfvrnss |  |-  ( ( ( W sitg M ) Fn dom ( W sitg M ) /\ A. f e. dom ( W sitg M ) ( ( W sitg M ) ` f ) e. B ) -> ran ( W sitg M ) C_ B ) | 
						
							| 17 | 14 15 16 | syl2anc |  |-  ( ph -> ran ( W sitg M ) C_ B ) | 
						
							| 18 |  | df-f |  |-  ( ( W sitg M ) : dom ( W sitg M ) --> B <-> ( ( W sitg M ) Fn dom ( W sitg M ) /\ ran ( W sitg M ) C_ B ) ) | 
						
							| 19 | 14 17 18 | sylanbrc |  |-  ( ph -> ( W sitg M ) : dom ( W sitg M ) --> B ) |