| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|- B = ( Base ` W ) |
| 2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
| 3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
| 4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
| 6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
| 7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
| 8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
| 9 |
|
sitgadd.1 |
|- ( ph -> W e. TopSp ) |
| 10 |
|
sitgadd.2 |
|- ( ph -> ( W |`v ( H " ( 0 [,) +oo ) ) ) e. SLMod ) |
| 11 |
|
sitgadd.3 |
|- ( ph -> J e. Fre ) |
| 12 |
|
sitgadd.4 |
|- ( ph -> F e. dom ( W sitg M ) ) |
| 13 |
|
sitgadd.5 |
|- ( ph -> G e. dom ( W sitg M ) ) |
| 14 |
|
sitgadd.6 |
|- ( ph -> ( Scalar ` W ) e. RRExt ) |
| 15 |
|
sitgadd.7 |
|- .+ = ( +g ` W ) |
| 16 |
10
|
adantr |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( W |`v ( H " ( 0 [,) +oo ) ) ) e. SLMod ) |
| 17 |
|
simpl |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ph ) |
| 18 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 19 |
18
|
rrhfe |
|- ( ( Scalar ` W ) e. RRExt -> ( RRHom ` ( Scalar ` W ) ) : RR --> ( Base ` ( Scalar ` W ) ) ) |
| 20 |
14 19
|
syl |
|- ( ph -> ( RRHom ` ( Scalar ` W ) ) : RR --> ( Base ` ( Scalar ` W ) ) ) |
| 21 |
6
|
feq1i |
|- ( H : RR --> ( Base ` ( Scalar ` W ) ) <-> ( RRHom ` ( Scalar ` W ) ) : RR --> ( Base ` ( Scalar ` W ) ) ) |
| 22 |
20 21
|
sylibr |
|- ( ph -> H : RR --> ( Base ` ( Scalar ` W ) ) ) |
| 23 |
22
|
ffnd |
|- ( ph -> H Fn RR ) |
| 24 |
17 23
|
syl |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> H Fn RR ) |
| 25 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 26 |
25
|
a1i |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( 0 [,) +oo ) C_ RR ) |
| 27 |
|
simpr |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) |
| 28 |
27
|
eldifad |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> p e. ( ran F X. ran G ) ) |
| 29 |
|
xp1st |
|- ( p e. ( ran F X. ran G ) -> ( 1st ` p ) e. ran F ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( 1st ` p ) e. ran F ) |
| 31 |
|
xp2nd |
|- ( p e. ( ran F X. ran G ) -> ( 2nd ` p ) e. ran G ) |
| 32 |
28 31
|
syl |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( 2nd ` p ) e. ran G ) |
| 33 |
27
|
eldifbd |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> -. p e. { <. .0. , .0. >. } ) |
| 34 |
|
velsn |
|- ( p e. { <. .0. , .0. >. } <-> p = <. .0. , .0. >. ) |
| 35 |
34
|
notbii |
|- ( -. p e. { <. .0. , .0. >. } <-> -. p = <. .0. , .0. >. ) |
| 36 |
33 35
|
sylib |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> -. p = <. .0. , .0. >. ) |
| 37 |
|
eqopi |
|- ( ( p e. ( ran F X. ran G ) /\ ( ( 1st ` p ) = .0. /\ ( 2nd ` p ) = .0. ) ) -> p = <. .0. , .0. >. ) |
| 38 |
37
|
ex |
|- ( p e. ( ran F X. ran G ) -> ( ( ( 1st ` p ) = .0. /\ ( 2nd ` p ) = .0. ) -> p = <. .0. , .0. >. ) ) |
| 39 |
38
|
con3d |
|- ( p e. ( ran F X. ran G ) -> ( -. p = <. .0. , .0. >. -> -. ( ( 1st ` p ) = .0. /\ ( 2nd ` p ) = .0. ) ) ) |
| 40 |
39
|
imp |
|- ( ( p e. ( ran F X. ran G ) /\ -. p = <. .0. , .0. >. ) -> -. ( ( 1st ` p ) = .0. /\ ( 2nd ` p ) = .0. ) ) |
| 41 |
28 36 40
|
syl2anc |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> -. ( ( 1st ` p ) = .0. /\ ( 2nd ` p ) = .0. ) ) |
| 42 |
|
ianor |
|- ( -. ( ( 1st ` p ) = .0. /\ ( 2nd ` p ) = .0. ) <-> ( -. ( 1st ` p ) = .0. \/ -. ( 2nd ` p ) = .0. ) ) |
| 43 |
|
df-ne |
|- ( ( 1st ` p ) =/= .0. <-> -. ( 1st ` p ) = .0. ) |
| 44 |
|
df-ne |
|- ( ( 2nd ` p ) =/= .0. <-> -. ( 2nd ` p ) = .0. ) |
| 45 |
43 44
|
orbi12i |
|- ( ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) <-> ( -. ( 1st ` p ) = .0. \/ -. ( 2nd ` p ) = .0. ) ) |
| 46 |
42 45
|
bitr4i |
|- ( -. ( ( 1st ` p ) = .0. /\ ( 2nd ` p ) = .0. ) <-> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) |
| 47 |
41 46
|
sylib |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) |
| 48 |
1 2 3 4 5 6 7 8 12 13 9 11
|
sibfinima |
|- ( ( ( ph /\ ( 1st ` p ) e. ran F /\ ( 2nd ` p ) e. ran G ) /\ ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) -> ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. ( 0 [,) +oo ) ) |
| 49 |
17 30 32 47 48
|
syl31anc |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. ( 0 [,) +oo ) ) |
| 50 |
|
fnfvima |
|- ( ( H Fn RR /\ ( 0 [,) +oo ) C_ RR /\ ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. ( 0 [,) +oo ) ) -> ( H ` ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) e. ( H " ( 0 [,) +oo ) ) ) |
| 51 |
24 26 49 50
|
syl3anc |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( H ` ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) e. ( H " ( 0 [,) +oo ) ) ) |
| 52 |
|
imassrn |
|- ( H " ( 0 [,) +oo ) ) C_ ran H |
| 53 |
22
|
frnd |
|- ( ph -> ran H C_ ( Base ` ( Scalar ` W ) ) ) |
| 54 |
52 53
|
sstrid |
|- ( ph -> ( H " ( 0 [,) +oo ) ) C_ ( Base ` ( Scalar ` W ) ) ) |
| 55 |
|
eqid |
|- ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) = ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) |
| 56 |
55 18
|
ressbas2 |
|- ( ( H " ( 0 [,) +oo ) ) C_ ( Base ` ( Scalar ` W ) ) -> ( H " ( 0 [,) +oo ) ) = ( Base ` ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) ) ) |
| 57 |
54 56
|
syl |
|- ( ph -> ( H " ( 0 [,) +oo ) ) = ( Base ` ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) ) ) |
| 58 |
17 57
|
syl |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( H " ( 0 [,) +oo ) ) = ( Base ` ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) ) ) |
| 59 |
51 58
|
eleqtrd |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( H ` ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) e. ( Base ` ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) ) ) |
| 60 |
1 2 3 4 5 6 7 8 13
|
sibff |
|- ( ph -> G : U. dom M --> U. J ) |
| 61 |
1 2
|
tpsuni |
|- ( W e. TopSp -> B = U. J ) |
| 62 |
|
feq3 |
|- ( B = U. J -> ( G : U. dom M --> B <-> G : U. dom M --> U. J ) ) |
| 63 |
9 61 62
|
3syl |
|- ( ph -> ( G : U. dom M --> B <-> G : U. dom M --> U. J ) ) |
| 64 |
60 63
|
mpbird |
|- ( ph -> G : U. dom M --> B ) |
| 65 |
64
|
frnd |
|- ( ph -> ran G C_ B ) |
| 66 |
65
|
adantr |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ran G C_ B ) |
| 67 |
66 32
|
sseldd |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( 2nd ` p ) e. B ) |
| 68 |
6
|
fvexi |
|- H e. _V |
| 69 |
|
imaexg |
|- ( H e. _V -> ( H " ( 0 [,) +oo ) ) e. _V ) |
| 70 |
|
eqid |
|- ( W |`v ( H " ( 0 [,) +oo ) ) ) = ( W |`v ( H " ( 0 [,) +oo ) ) ) |
| 71 |
70 1
|
resvbas |
|- ( ( H " ( 0 [,) +oo ) ) e. _V -> B = ( Base ` ( W |`v ( H " ( 0 [,) +oo ) ) ) ) ) |
| 72 |
68 69 71
|
mp2b |
|- B = ( Base ` ( W |`v ( H " ( 0 [,) +oo ) ) ) ) |
| 73 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 74 |
70 73 18
|
resvsca |
|- ( ( H " ( 0 [,) +oo ) ) e. _V -> ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) = ( Scalar ` ( W |`v ( H " ( 0 [,) +oo ) ) ) ) ) |
| 75 |
68 69 74
|
mp2b |
|- ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) = ( Scalar ` ( W |`v ( H " ( 0 [,) +oo ) ) ) ) |
| 76 |
70 5
|
resvvsca |
|- ( ( H " ( 0 [,) +oo ) ) e. _V -> .x. = ( .s ` ( W |`v ( H " ( 0 [,) +oo ) ) ) ) ) |
| 77 |
68 69 76
|
mp2b |
|- .x. = ( .s ` ( W |`v ( H " ( 0 [,) +oo ) ) ) ) |
| 78 |
|
eqid |
|- ( Base ` ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) ) = ( Base ` ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) ) |
| 79 |
72 75 77 78
|
slmdvscl |
|- ( ( ( W |`v ( H " ( 0 [,) +oo ) ) ) e. SLMod /\ ( H ` ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) e. ( Base ` ( ( Scalar ` W ) |`s ( H " ( 0 [,) +oo ) ) ) ) /\ ( 2nd ` p ) e. B ) -> ( ( H ` ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) .x. ( 2nd ` p ) ) e. B ) |
| 80 |
16 59 67 79
|
syl3anc |
|- ( ( ph /\ p e. ( ( ran F X. ran G ) \ { <. .0. , .0. >. } ) ) -> ( ( H ` ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) .x. ( 2nd ` p ) ) e. B ) |