| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
| 4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
| 7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
| 8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
| 9 |
|
sitgadd.1 |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 10 |
|
sitgadd.2 |
⊢ ( 𝜑 → ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ∈ SLMod ) |
| 11 |
|
sitgadd.3 |
⊢ ( 𝜑 → 𝐽 ∈ Fre ) |
| 12 |
|
sitgadd.4 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
| 13 |
|
sitgadd.5 |
⊢ ( 𝜑 → 𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
| 14 |
|
sitgadd.6 |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ ℝExt ) |
| 15 |
|
sitgadd.7 |
⊢ + = ( +g ‘ 𝑊 ) |
| 16 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ∈ SLMod ) |
| 17 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → 𝜑 ) |
| 18 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 19 |
18
|
rrhfe |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ ℝExt → ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 20 |
14 19
|
syl |
⊢ ( 𝜑 → ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 21 |
6
|
feq1i |
⊢ ( 𝐻 : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 |
22
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn ℝ ) |
| 24 |
17 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → 𝐻 Fn ℝ ) |
| 25 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 0 [,) +∞ ) ⊆ ℝ ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) |
| 28 |
27
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ) |
| 29 |
|
xp1st |
⊢ ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ) |
| 31 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) |
| 32 |
28 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) |
| 33 |
27
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ¬ 𝑝 ∈ { 〈 0 , 0 〉 } ) |
| 34 |
|
velsn |
⊢ ( 𝑝 ∈ { 〈 0 , 0 〉 } ↔ 𝑝 = 〈 0 , 0 〉 ) |
| 35 |
34
|
notbii |
⊢ ( ¬ 𝑝 ∈ { 〈 0 , 0 〉 } ↔ ¬ 𝑝 = 〈 0 , 0 〉 ) |
| 36 |
33 35
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ¬ 𝑝 = 〈 0 , 0 〉 ) |
| 37 |
|
eqopi |
⊢ ( ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ∧ ( ( 1st ‘ 𝑝 ) = 0 ∧ ( 2nd ‘ 𝑝 ) = 0 ) ) → 𝑝 = 〈 0 , 0 〉 ) |
| 38 |
37
|
ex |
⊢ ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( ( ( 1st ‘ 𝑝 ) = 0 ∧ ( 2nd ‘ 𝑝 ) = 0 ) → 𝑝 = 〈 0 , 0 〉 ) ) |
| 39 |
38
|
con3d |
⊢ ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( ¬ 𝑝 = 〈 0 , 0 〉 → ¬ ( ( 1st ‘ 𝑝 ) = 0 ∧ ( 2nd ‘ 𝑝 ) = 0 ) ) ) |
| 40 |
39
|
imp |
⊢ ( ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ∧ ¬ 𝑝 = 〈 0 , 0 〉 ) → ¬ ( ( 1st ‘ 𝑝 ) = 0 ∧ ( 2nd ‘ 𝑝 ) = 0 ) ) |
| 41 |
28 36 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ¬ ( ( 1st ‘ 𝑝 ) = 0 ∧ ( 2nd ‘ 𝑝 ) = 0 ) ) |
| 42 |
|
ianor |
⊢ ( ¬ ( ( 1st ‘ 𝑝 ) = 0 ∧ ( 2nd ‘ 𝑝 ) = 0 ) ↔ ( ¬ ( 1st ‘ 𝑝 ) = 0 ∨ ¬ ( 2nd ‘ 𝑝 ) = 0 ) ) |
| 43 |
|
df-ne |
⊢ ( ( 1st ‘ 𝑝 ) ≠ 0 ↔ ¬ ( 1st ‘ 𝑝 ) = 0 ) |
| 44 |
|
df-ne |
⊢ ( ( 2nd ‘ 𝑝 ) ≠ 0 ↔ ¬ ( 2nd ‘ 𝑝 ) = 0 ) |
| 45 |
43 44
|
orbi12i |
⊢ ( ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ↔ ( ¬ ( 1st ‘ 𝑝 ) = 0 ∨ ¬ ( 2nd ‘ 𝑝 ) = 0 ) ) |
| 46 |
42 45
|
bitr4i |
⊢ ( ¬ ( ( 1st ‘ 𝑝 ) = 0 ∧ ( 2nd ‘ 𝑝 ) = 0 ) ↔ ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) |
| 47 |
41 46
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) |
| 48 |
1 2 3 4 5 6 7 8 12 13 9 11
|
sibfinima |
⊢ ( ( ( 𝜑 ∧ ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ∧ ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) ∧ ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 49 |
17 30 32 47 48
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 50 |
|
fnfvima |
⊢ ( ( 𝐻 Fn ℝ ∧ ( 0 [,) +∞ ) ⊆ ℝ ∧ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) ) → ( 𝐻 ‘ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) |
| 51 |
24 26 49 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 𝐻 ‘ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) |
| 52 |
|
imassrn |
⊢ ( 𝐻 “ ( 0 [,) +∞ ) ) ⊆ ran 𝐻 |
| 53 |
22
|
frnd |
⊢ ( 𝜑 → ran 𝐻 ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 54 |
52 53
|
sstrid |
⊢ ( 𝜑 → ( 𝐻 “ ( 0 [,) +∞ ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 55 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) = ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) |
| 56 |
55 18
|
ressbas2 |
⊢ ( ( 𝐻 “ ( 0 [,) +∞ ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝐻 “ ( 0 [,) +∞ ) ) = ( Base ‘ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) ) |
| 57 |
54 56
|
syl |
⊢ ( 𝜑 → ( 𝐻 “ ( 0 [,) +∞ ) ) = ( Base ‘ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) ) |
| 58 |
17 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 𝐻 “ ( 0 [,) +∞ ) ) = ( Base ‘ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) ) |
| 59 |
51 58
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 𝐻 ‘ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) ∈ ( Base ‘ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) ) |
| 60 |
1 2 3 4 5 6 7 8 13
|
sibff |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) |
| 61 |
1 2
|
tpsuni |
⊢ ( 𝑊 ∈ TopSp → 𝐵 = ∪ 𝐽 ) |
| 62 |
|
feq3 |
⊢ ( 𝐵 = ∪ 𝐽 → ( 𝐺 : ∪ dom 𝑀 ⟶ 𝐵 ↔ 𝐺 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) ) |
| 63 |
9 61 62
|
3syl |
⊢ ( 𝜑 → ( 𝐺 : ∪ dom 𝑀 ⟶ 𝐵 ↔ 𝐺 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) ) |
| 64 |
60 63
|
mpbird |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ 𝐵 ) |
| 65 |
64
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ 𝐵 ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ran 𝐺 ⊆ 𝐵 ) |
| 67 |
66 32
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
| 68 |
6
|
fvexi |
⊢ 𝐻 ∈ V |
| 69 |
|
imaexg |
⊢ ( 𝐻 ∈ V → ( 𝐻 “ ( 0 [,) +∞ ) ) ∈ V ) |
| 70 |
|
eqid |
⊢ ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) = ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) |
| 71 |
70 1
|
resvbas |
⊢ ( ( 𝐻 “ ( 0 [,) +∞ ) ) ∈ V → 𝐵 = ( Base ‘ ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) ) |
| 72 |
68 69 71
|
mp2b |
⊢ 𝐵 = ( Base ‘ ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) |
| 73 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 74 |
70 73 18
|
resvsca |
⊢ ( ( 𝐻 “ ( 0 [,) +∞ ) ) ∈ V → ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) = ( Scalar ‘ ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) ) |
| 75 |
68 69 74
|
mp2b |
⊢ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) = ( Scalar ‘ ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) |
| 76 |
70 5
|
resvvsca |
⊢ ( ( 𝐻 “ ( 0 [,) +∞ ) ) ∈ V → · = ( ·𝑠 ‘ ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) ) |
| 77 |
68 69 76
|
mp2b |
⊢ · = ( ·𝑠 ‘ ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) |
| 78 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) |
| 79 |
72 75 77 78
|
slmdvscl |
⊢ ( ( ( 𝑊 ↾v ( 𝐻 “ ( 0 [,) +∞ ) ) ) ∈ SLMod ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) ∈ ( Base ‘ ( ( Scalar ‘ 𝑊 ) ↾s ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) ∧ ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) · ( 2nd ‘ 𝑝 ) ) ∈ 𝐵 ) |
| 80 |
16 59 67 79
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( ran 𝐹 × ran 𝐺 ) ∖ { 〈 0 , 0 〉 } ) ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) · ( 2nd ‘ 𝑝 ) ) ∈ 𝐵 ) |