Metamath Proof Explorer


Theorem sitg0

Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Hypotheses sitgval.b
|- B = ( Base ` W )
sitgval.j
|- J = ( TopOpen ` W )
sitgval.s
|- S = ( sigaGen ` J )
sitgval.0
|- .0. = ( 0g ` W )
sitgval.x
|- .x. = ( .s ` W )
sitgval.h
|- H = ( RRHom ` ( Scalar ` W ) )
sitgval.1
|- ( ph -> W e. V )
sitgval.2
|- ( ph -> M e. U. ran measures )
sitg0.1
|- ( ph -> W e. TopSp )
sitg0.2
|- ( ph -> W e. Mnd )
Assertion sitg0
|- ( ph -> ( ( W sitg M ) ` ( U. dom M X. { .0. } ) ) = .0. )

Proof

Step Hyp Ref Expression
1 sitgval.b
 |-  B = ( Base ` W )
2 sitgval.j
 |-  J = ( TopOpen ` W )
3 sitgval.s
 |-  S = ( sigaGen ` J )
4 sitgval.0
 |-  .0. = ( 0g ` W )
5 sitgval.x
 |-  .x. = ( .s ` W )
6 sitgval.h
 |-  H = ( RRHom ` ( Scalar ` W ) )
7 sitgval.1
 |-  ( ph -> W e. V )
8 sitgval.2
 |-  ( ph -> M e. U. ran measures )
9 sitg0.1
 |-  ( ph -> W e. TopSp )
10 sitg0.2
 |-  ( ph -> W e. Mnd )
11 1 2 3 4 5 6 7 8 9 10 sibf0
 |-  ( ph -> ( U. dom M X. { .0. } ) e. dom ( W sitg M ) )
12 1 2 3 4 5 6 7 8 11 sitgfval
 |-  ( ph -> ( ( W sitg M ) ` ( U. dom M X. { .0. } ) ) = ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) )
13 rnxpss
 |-  ran ( U. dom M X. { .0. } ) C_ { .0. }
14 ssdif0
 |-  ( ran ( U. dom M X. { .0. } ) C_ { .0. } <-> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) )
15 13 14 mpbi
 |-  ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/)
16 mpteq1
 |-  ( ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) -> ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) )
17 15 16 ax-mp
 |-  ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) )
18 mpt0
 |-  ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = (/)
19 17 18 eqtri
 |-  ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = (/)
20 19 oveq2i
 |-  ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) = ( W gsum (/) )
21 4 gsum0
 |-  ( W gsum (/) ) = .0.
22 20 21 eqtri
 |-  ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) = .0.
23 12 22 eqtrdi
 |-  ( ph -> ( ( W sitg M ) ` ( U. dom M X. { .0. } ) ) = .0. )