| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | sitgval.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | sitgval.s |  |-  S = ( sigaGen ` J ) | 
						
							| 4 |  | sitgval.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | sitgval.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | sitgval.h |  |-  H = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 7 |  | sitgval.1 |  |-  ( ph -> W e. V ) | 
						
							| 8 |  | sitgval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 9 |  | sitg0.1 |  |-  ( ph -> W e. TopSp ) | 
						
							| 10 |  | sitg0.2 |  |-  ( ph -> W e. Mnd ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | sibf0 |  |-  ( ph -> ( U. dom M X. { .0. } ) e. dom ( W sitg M ) ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 11 | sitgfval |  |-  ( ph -> ( ( W sitg M ) ` ( U. dom M X. { .0. } ) ) = ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) ) | 
						
							| 13 |  | rnxpss |  |-  ran ( U. dom M X. { .0. } ) C_ { .0. } | 
						
							| 14 |  | ssdif0 |  |-  ( ran ( U. dom M X. { .0. } ) C_ { .0. } <-> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) ) | 
						
							| 15 | 13 14 | mpbi |  |-  ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) | 
						
							| 16 |  | mpteq1 |  |-  ( ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) -> ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) | 
						
							| 18 |  | mpt0 |  |-  ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = (/) | 
						
							| 19 | 17 18 | eqtri |  |-  ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = (/) | 
						
							| 20 | 19 | oveq2i |  |-  ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) = ( W gsum (/) ) | 
						
							| 21 | 4 | gsum0 |  |-  ( W gsum (/) ) = .0. | 
						
							| 22 | 20 21 | eqtri |  |-  ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) = .0. | 
						
							| 23 | 12 22 | eqtrdi |  |-  ( ph -> ( ( W sitg M ) ` ( U. dom M X. { .0. } ) ) = .0. ) |