Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
|- B = ( Base ` W ) |
2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
9 |
|
sitg0.1 |
|- ( ph -> W e. TopSp ) |
10 |
|
sitg0.2 |
|- ( ph -> W e. Mnd ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
sibf0 |
|- ( ph -> ( U. dom M X. { .0. } ) e. dom ( W sitg M ) ) |
12 |
1 2 3 4 5 6 7 8 11
|
sitgfval |
|- ( ph -> ( ( W sitg M ) ` ( U. dom M X. { .0. } ) ) = ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) ) |
13 |
|
rnxpss |
|- ran ( U. dom M X. { .0. } ) C_ { .0. } |
14 |
|
ssdif0 |
|- ( ran ( U. dom M X. { .0. } ) C_ { .0. } <-> ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) ) |
15 |
13 14
|
mpbi |
|- ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) |
16 |
|
mpteq1 |
|- ( ( ran ( U. dom M X. { .0. } ) \ { .0. } ) = (/) -> ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) |
17 |
15 16
|
ax-mp |
|- ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) |
18 |
|
mpt0 |
|- ( x e. (/) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = (/) |
19 |
17 18
|
eqtri |
|- ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) = (/) |
20 |
19
|
oveq2i |
|- ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) = ( W gsum (/) ) |
21 |
4
|
gsum0 |
|- ( W gsum (/) ) = .0. |
22 |
20 21
|
eqtri |
|- ( W gsum ( x e. ( ran ( U. dom M X. { .0. } ) \ { .0. } ) |-> ( ( H ` ( M ` ( `' ( U. dom M X. { .0. } ) " { x } ) ) ) .x. x ) ) ) = .0. |
23 |
12 22
|
eqtrdi |
|- ( ph -> ( ( W sitg M ) ` ( U. dom M X. { .0. } ) ) = .0. ) |