Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
5 |
|
smndex1mgm.b |
⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
6 |
5
|
eleq2i |
⊢ ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
7 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
8 |
7
|
sneqd |
⊢ ( 𝑛 = 𝑘 → { ( 𝐺 ‘ 𝑛 ) } = { ( 𝐺 ‘ 𝑘 ) } ) |
9 |
8
|
cbviunv |
⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } = ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } |
10 |
9
|
uneq2i |
⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) = ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) |
11 |
10
|
eleq2i |
⊢ ( 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
12 |
6 11
|
bitri |
⊢ ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
13 |
|
elun |
⊢ ( 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( 𝑏 ∈ { 𝐼 } ∨ 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
14 |
|
velsn |
⊢ ( 𝑏 ∈ { 𝐼 } ↔ 𝑏 = 𝐼 ) |
15 |
|
eliun |
⊢ ( 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) |
16 |
14 15
|
orbi12i |
⊢ ( ( 𝑏 ∈ { 𝐼 } ∨ 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) ) |
17 |
12 13 16
|
3bitri |
⊢ ( 𝑏 ∈ 𝐵 ↔ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) ) |
18 |
1 2 3
|
smndex1ibas |
⊢ 𝐼 ∈ ( Base ‘ 𝑀 ) |
19 |
|
eleq1 |
⊢ ( 𝑏 = 𝐼 → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ 𝐼 ∈ ( Base ‘ 𝑀 ) ) ) |
20 |
18 19
|
mpbiri |
⊢ ( 𝑏 = 𝐼 → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
21 |
1 2 3 4
|
smndex1gbas |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → ( 𝐺 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) |
23 |
|
elsni |
⊢ ( 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } → 𝑏 = ( 𝐺 ‘ 𝑘 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ ( 𝐺 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ ( 𝐺 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) ) |
26 |
22 25
|
mpbird |
⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
27 |
26
|
rexlimiva |
⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
28 |
20 27
|
jaoi |
⊢ ( ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
29 |
17 28
|
sylbi |
⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
30 |
29
|
ssriv |
⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |