Metamath Proof Explorer


Theorem smndex1basss

Description: The modulo function I and the constant functions ( GK ) are endofunctions on NN0 . (Contributed by AV, 12-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m 𝑀 = ( EndoFMnd ‘ ℕ0 )
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) )
smndex1ibas.g 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0𝑛 ) )
smndex1mgm.b 𝐵 = ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } )
Assertion smndex1basss 𝐵 ⊆ ( Base ‘ 𝑀 )

Proof

Step Hyp Ref Expression
1 smndex1ibas.m 𝑀 = ( EndoFMnd ‘ ℕ0 )
2 smndex1ibas.n 𝑁 ∈ ℕ
3 smndex1ibas.i 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) )
4 smndex1ibas.g 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0𝑛 ) )
5 smndex1mgm.b 𝐵 = ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } )
6 5 eleq2i ( 𝑏𝐵𝑏 ∈ ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) )
7 fveq2 ( 𝑛 = 𝑘 → ( 𝐺𝑛 ) = ( 𝐺𝑘 ) )
8 7 sneqd ( 𝑛 = 𝑘 → { ( 𝐺𝑛 ) } = { ( 𝐺𝑘 ) } )
9 8 cbviunv 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } = 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑘 ) }
10 9 uneq2i ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) = ( { 𝐼 } ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑘 ) } )
11 10 eleq2i ( 𝑏 ∈ ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) ↔ 𝑏 ∈ ( { 𝐼 } ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑘 ) } ) )
12 6 11 bitri ( 𝑏𝐵𝑏 ∈ ( { 𝐼 } ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑘 ) } ) )
13 elun ( 𝑏 ∈ ( { 𝐼 } ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑘 ) } ) ↔ ( 𝑏 ∈ { 𝐼 } ∨ 𝑏 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑘 ) } ) )
14 velsn ( 𝑏 ∈ { 𝐼 } ↔ 𝑏 = 𝐼 )
15 eliun ( 𝑏 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺𝑘 ) } )
16 14 15 orbi12i ( ( 𝑏 ∈ { 𝐼 } ∨ 𝑏 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑘 ) } ) ↔ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺𝑘 ) } ) )
17 12 13 16 3bitri ( 𝑏𝐵 ↔ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺𝑘 ) } ) )
18 1 2 3 smndex1ibas 𝐼 ∈ ( Base ‘ 𝑀 )
19 eleq1 ( 𝑏 = 𝐼 → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ 𝐼 ∈ ( Base ‘ 𝑀 ) ) )
20 18 19 mpbiri ( 𝑏 = 𝐼𝑏 ∈ ( Base ‘ 𝑀 ) )
21 1 2 3 4 smndex1gbas ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺𝑘 ) ∈ ( Base ‘ 𝑀 ) )
22 21 adantr ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺𝑘 ) } ) → ( 𝐺𝑘 ) ∈ ( Base ‘ 𝑀 ) )
23 elsni ( 𝑏 ∈ { ( 𝐺𝑘 ) } → 𝑏 = ( 𝐺𝑘 ) )
24 23 eleq1d ( 𝑏 ∈ { ( 𝐺𝑘 ) } → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ ( 𝐺𝑘 ) ∈ ( Base ‘ 𝑀 ) ) )
25 24 adantl ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺𝑘 ) } ) → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ ( 𝐺𝑘 ) ∈ ( Base ‘ 𝑀 ) ) )
26 22 25 mpbird ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺𝑘 ) } ) → 𝑏 ∈ ( Base ‘ 𝑀 ) )
27 26 rexlimiva ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺𝑘 ) } → 𝑏 ∈ ( Base ‘ 𝑀 ) )
28 20 27 jaoi ( ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺𝑘 ) } ) → 𝑏 ∈ ( Base ‘ 𝑀 ) )
29 17 28 sylbi ( 𝑏𝐵𝑏 ∈ ( Base ‘ 𝑀 ) )
30 29 ssriv 𝐵 ⊆ ( Base ‘ 𝑀 )