| Step |
Hyp |
Ref |
Expression |
| 1 |
|
squeezedltsq.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
squeezedltsq.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
squeezedltsq.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
squeezedltsq.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 5 |
|
squeezedltsq.5 |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
| 6 |
2
|
renegcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → - 𝐵 ∈ ℝ ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → 𝐵 ≤ 0 ) |
| 9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → 𝐵 ∈ ℝ ) |
| 10 |
|
le0neg1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) |
| 12 |
8 11
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → 0 ≤ - 𝐵 ) |
| 13 |
7 12
|
jca |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( - 𝐵 ∈ ℝ ∧ 0 ≤ - 𝐵 ) ) |
| 14 |
1
|
renegcld |
⊢ ( 𝜑 → - 𝐴 ∈ ℝ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → - 𝐴 ∈ ℝ ) |
| 16 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 17 |
|
ltneg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) ) |
| 19 |
4 18
|
mpbid |
⊢ ( 𝜑 → - 𝐵 < - 𝐴 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → - 𝐵 < - 𝐴 ) |
| 21 |
13 15 20
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( ( - 𝐵 ∈ ℝ ∧ 0 ≤ - 𝐵 ) ∧ - 𝐴 ∈ ℝ ∧ - 𝐵 < - 𝐴 ) ) |
| 22 |
|
lt2msq1 |
⊢ ( ( ( - 𝐵 ∈ ℝ ∧ 0 ≤ - 𝐵 ) ∧ - 𝐴 ∈ ℝ ∧ - 𝐵 < - 𝐴 ) → ( - 𝐵 · - 𝐵 ) < ( - 𝐴 · - 𝐴 ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( - 𝐵 · - 𝐵 ) < ( - 𝐴 · - 𝐴 ) ) |
| 24 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 25 |
|
mul2neg |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐵 · - 𝐵 ) = ( 𝐵 · 𝐵 ) ) |
| 26 |
24 24 25
|
syl2anc |
⊢ ( 𝐵 ∈ ℝ → ( - 𝐵 · - 𝐵 ) = ( 𝐵 · 𝐵 ) ) |
| 27 |
2 26
|
syl |
⊢ ( 𝜑 → ( - 𝐵 · - 𝐵 ) = ( 𝐵 · 𝐵 ) ) |
| 28 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 29 |
|
mul2neg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 𝐴 · - 𝐴 ) = ( 𝐴 · 𝐴 ) ) |
| 30 |
28 28 29
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( - 𝐴 · - 𝐴 ) = ( 𝐴 · 𝐴 ) ) |
| 31 |
1 30
|
syl |
⊢ ( 𝜑 → ( - 𝐴 · - 𝐴 ) = ( 𝐴 · 𝐴 ) ) |
| 32 |
27 31
|
breq12d |
⊢ ( 𝜑 → ( ( - 𝐵 · - 𝐵 ) < ( - 𝐴 · - 𝐴 ) ↔ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( ( - 𝐵 · - 𝐵 ) < ( - 𝐴 · - 𝐴 ) ↔ ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) ) |
| 34 |
23 33
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ) |
| 35 |
34
|
orcd |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ∨ ( 𝐵 · 𝐵 ) < ( 𝐶 · 𝐶 ) ) ) |
| 36 |
2
|
anim1i |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 37 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
| 38 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → 𝐵 < 𝐶 ) |
| 39 |
36 37 38
|
3jca |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ ∧ 𝐵 < 𝐶 ) ) |
| 40 |
|
lt2msq1 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ ∧ 𝐵 < 𝐶 ) → ( 𝐵 · 𝐵 ) < ( 𝐶 · 𝐶 ) ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → ( 𝐵 · 𝐵 ) < ( 𝐶 · 𝐶 ) ) |
| 42 |
41
|
olcd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → ( ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ∨ ( 𝐵 · 𝐵 ) < ( 𝐶 · 𝐶 ) ) ) |
| 43 |
|
0re |
⊢ 0 ∈ ℝ |
| 44 |
43
|
jctr |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
| 45 |
|
letric |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐵 ≤ 0 ∨ 0 ≤ 𝐵 ) ) |
| 46 |
2 44 45
|
3syl |
⊢ ( 𝜑 → ( 𝐵 ≤ 0 ∨ 0 ≤ 𝐵 ) ) |
| 47 |
35 42 46
|
mpjaodan |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐵 ) < ( 𝐴 · 𝐴 ) ∨ ( 𝐵 · 𝐵 ) < ( 𝐶 · 𝐶 ) ) ) |