| Step |
Hyp |
Ref |
Expression |
| 1 |
|
squeezedltsq.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
squeezedltsq.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
squeezedltsq.3 |
|- ( ph -> C e. RR ) |
| 4 |
|
squeezedltsq.4 |
|- ( ph -> A < B ) |
| 5 |
|
squeezedltsq.5 |
|- ( ph -> B < C ) |
| 6 |
2
|
renegcld |
|- ( ph -> -u B e. RR ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ B <_ 0 ) -> -u B e. RR ) |
| 8 |
|
simpr |
|- ( ( ph /\ B <_ 0 ) -> B <_ 0 ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ B <_ 0 ) -> B e. RR ) |
| 10 |
|
le0neg1 |
|- ( B e. RR -> ( B <_ 0 <-> 0 <_ -u B ) ) |
| 11 |
9 10
|
syl |
|- ( ( ph /\ B <_ 0 ) -> ( B <_ 0 <-> 0 <_ -u B ) ) |
| 12 |
8 11
|
mpbid |
|- ( ( ph /\ B <_ 0 ) -> 0 <_ -u B ) |
| 13 |
7 12
|
jca |
|- ( ( ph /\ B <_ 0 ) -> ( -u B e. RR /\ 0 <_ -u B ) ) |
| 14 |
1
|
renegcld |
|- ( ph -> -u A e. RR ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ B <_ 0 ) -> -u A e. RR ) |
| 16 |
1 2
|
jca |
|- ( ph -> ( A e. RR /\ B e. RR ) ) |
| 17 |
|
ltneg |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -u B < -u A ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( A < B <-> -u B < -u A ) ) |
| 19 |
4 18
|
mpbid |
|- ( ph -> -u B < -u A ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ B <_ 0 ) -> -u B < -u A ) |
| 21 |
13 15 20
|
3jca |
|- ( ( ph /\ B <_ 0 ) -> ( ( -u B e. RR /\ 0 <_ -u B ) /\ -u A e. RR /\ -u B < -u A ) ) |
| 22 |
|
lt2msq1 |
|- ( ( ( -u B e. RR /\ 0 <_ -u B ) /\ -u A e. RR /\ -u B < -u A ) -> ( -u B x. -u B ) < ( -u A x. -u A ) ) |
| 23 |
21 22
|
syl |
|- ( ( ph /\ B <_ 0 ) -> ( -u B x. -u B ) < ( -u A x. -u A ) ) |
| 24 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 25 |
|
mul2neg |
|- ( ( B e. CC /\ B e. CC ) -> ( -u B x. -u B ) = ( B x. B ) ) |
| 26 |
24 24 25
|
syl2anc |
|- ( B e. RR -> ( -u B x. -u B ) = ( B x. B ) ) |
| 27 |
2 26
|
syl |
|- ( ph -> ( -u B x. -u B ) = ( B x. B ) ) |
| 28 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 29 |
|
mul2neg |
|- ( ( A e. CC /\ A e. CC ) -> ( -u A x. -u A ) = ( A x. A ) ) |
| 30 |
28 28 29
|
syl2anc |
|- ( A e. RR -> ( -u A x. -u A ) = ( A x. A ) ) |
| 31 |
1 30
|
syl |
|- ( ph -> ( -u A x. -u A ) = ( A x. A ) ) |
| 32 |
27 31
|
breq12d |
|- ( ph -> ( ( -u B x. -u B ) < ( -u A x. -u A ) <-> ( B x. B ) < ( A x. A ) ) ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ B <_ 0 ) -> ( ( -u B x. -u B ) < ( -u A x. -u A ) <-> ( B x. B ) < ( A x. A ) ) ) |
| 34 |
23 33
|
mpbid |
|- ( ( ph /\ B <_ 0 ) -> ( B x. B ) < ( A x. A ) ) |
| 35 |
34
|
orcd |
|- ( ( ph /\ B <_ 0 ) -> ( ( B x. B ) < ( A x. A ) \/ ( B x. B ) < ( C x. C ) ) ) |
| 36 |
2
|
anim1i |
|- ( ( ph /\ 0 <_ B ) -> ( B e. RR /\ 0 <_ B ) ) |
| 37 |
3
|
adantr |
|- ( ( ph /\ 0 <_ B ) -> C e. RR ) |
| 38 |
5
|
adantr |
|- ( ( ph /\ 0 <_ B ) -> B < C ) |
| 39 |
36 37 38
|
3jca |
|- ( ( ph /\ 0 <_ B ) -> ( ( B e. RR /\ 0 <_ B ) /\ C e. RR /\ B < C ) ) |
| 40 |
|
lt2msq1 |
|- ( ( ( B e. RR /\ 0 <_ B ) /\ C e. RR /\ B < C ) -> ( B x. B ) < ( C x. C ) ) |
| 41 |
39 40
|
syl |
|- ( ( ph /\ 0 <_ B ) -> ( B x. B ) < ( C x. C ) ) |
| 42 |
41
|
olcd |
|- ( ( ph /\ 0 <_ B ) -> ( ( B x. B ) < ( A x. A ) \/ ( B x. B ) < ( C x. C ) ) ) |
| 43 |
|
0re |
|- 0 e. RR |
| 44 |
43
|
jctr |
|- ( B e. RR -> ( B e. RR /\ 0 e. RR ) ) |
| 45 |
|
letric |
|- ( ( B e. RR /\ 0 e. RR ) -> ( B <_ 0 \/ 0 <_ B ) ) |
| 46 |
2 44 45
|
3syl |
|- ( ph -> ( B <_ 0 \/ 0 <_ B ) ) |
| 47 |
35 42 46
|
mpjaodan |
|- ( ph -> ( ( B x. B ) < ( A x. A ) \/ ( B x. B ) < ( C x. C ) ) ) |