| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inss2 |
⊢ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 |
| 2 |
1
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ) |
| 3 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
| 4 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ 𝒫 𝐴 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 6 |
3 5
|
elind |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ ( 𝐶 ∩ 𝒫 𝐴 ) ) |
| 7 |
|
simp1l |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
| 8 |
|
inss1 |
⊢ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝐶 |
| 9 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝐶 ) → 𝑥 ⊆ 𝐶 ) |
| 10 |
8 9
|
mpan2 |
⊢ ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝐶 ) |
| 11 |
10
|
3ad2ant2 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝐶 ) |
| 12 |
|
simp3 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ≠ ∅ ) |
| 13 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
| 14 |
7 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
| 15 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
| 16 |
1 15
|
mpan2 |
⊢ ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
| 17 |
16
|
3ad2ant2 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝒫 𝐴 ) |
| 18 |
|
intssuni2 |
⊢ ( ( 𝑥 ⊆ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝒫 𝐴 ) |
| 19 |
17 12 18
|
syl2anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝒫 𝐴 ) |
| 20 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 21 |
19 20
|
sseqtrdi |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ 𝐴 ) |
| 22 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝐶 → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) |
| 25 |
21 24
|
mpbird |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝒫 𝐴 ) |
| 26 |
14 25
|
elind |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ ( 𝐶 ∩ 𝒫 𝐴 ) ) |
| 27 |
2 6 26
|
ismred |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐴 ) ∈ ( Moore ‘ 𝐴 ) ) |