| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgfix2.p | ⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 2 |  | eldif | ⊢ ( 𝑄  ∈  ( 𝑃  ∖  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐿 } )  ↔  ( 𝑄  ∈  𝑃  ∧  ¬  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐿 } ) ) | 
						
							| 3 |  | ianor | ⊢ ( ¬  ( 𝑄  ∈  𝑃  ∧  ( 𝑄 ‘ 𝐾 )  =  𝐿 )  ↔  ( ¬  𝑄  ∈  𝑃  ∨  ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿 ) ) | 
						
							| 4 |  | fveq1 | ⊢ ( 𝑞  =  𝑄  →  ( 𝑞 ‘ 𝐾 )  =  ( 𝑄 ‘ 𝐾 ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( 𝑞  =  𝑄  →  ( ( 𝑞 ‘ 𝐾 )  =  𝐿  ↔  ( 𝑄 ‘ 𝐾 )  =  𝐿 ) ) | 
						
							| 6 | 5 | elrab | ⊢ ( 𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐿 }  ↔  ( 𝑄  ∈  𝑃  ∧  ( 𝑄 ‘ 𝐾 )  =  𝐿 ) ) | 
						
							| 7 | 3 6 | xchnxbir | ⊢ ( ¬  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐿 }  ↔  ( ¬  𝑄  ∈  𝑃  ∨  ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿 ) ) | 
						
							| 8 | 7 | anbi2i | ⊢ ( ( 𝑄  ∈  𝑃  ∧  ¬  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐿 } )  ↔  ( 𝑄  ∈  𝑃  ∧  ( ¬  𝑄  ∈  𝑃  ∨  ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿 ) ) ) | 
						
							| 9 | 2 8 | bitri | ⊢ ( 𝑄  ∈  ( 𝑃  ∖  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐿 } )  ↔  ( 𝑄  ∈  𝑃  ∧  ( ¬  𝑄  ∈  𝑃  ∨  ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿 ) ) ) | 
						
							| 10 |  | pm2.21 | ⊢ ( ¬  𝑄  ∈  𝑃  →  ( 𝑄  ∈  𝑃  →  ( 𝐿  ∈  𝑁  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) ) | 
						
							| 11 | 1 | symgmov2 | ⊢ ( 𝑄  ∈  𝑃  →  ∀ 𝑙  ∈  𝑁 ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝑙 ) | 
						
							| 12 |  | eqeq2 | ⊢ ( 𝑙  =  𝐿  →  ( ( 𝑄 ‘ 𝑘 )  =  𝑙  ↔  ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑙  =  𝐿  →  ( ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝑙  ↔  ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) | 
						
							| 14 | 13 | rspcva | ⊢ ( ( 𝐿  ∈  𝑁  ∧  ∀ 𝑙  ∈  𝑁 ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝑙 )  →  ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝐿 ) | 
						
							| 15 |  | eqeq2 | ⊢ ( 𝐿  =  ( 𝑄 ‘ 𝑘 )  →  ( ( 𝑄 ‘ 𝐾 )  =  𝐿  ↔  ( 𝑄 ‘ 𝐾 )  =  ( 𝑄 ‘ 𝑘 ) ) ) | 
						
							| 16 | 15 | eqcoms | ⊢ ( ( 𝑄 ‘ 𝑘 )  =  𝐿  →  ( ( 𝑄 ‘ 𝐾 )  =  𝐿  ↔  ( 𝑄 ‘ 𝐾 )  =  ( 𝑄 ‘ 𝑘 ) ) ) | 
						
							| 17 | 16 | notbid | ⊢ ( ( 𝑄 ‘ 𝑘 )  =  𝐿  →  ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  ↔  ¬  ( 𝑄 ‘ 𝐾 )  =  ( 𝑄 ‘ 𝑘 ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝐾  =  𝑘  →  ( 𝑄 ‘ 𝐾 )  =  ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 19 | 18 | eqcoms | ⊢ ( 𝑘  =  𝐾  →  ( 𝑄 ‘ 𝐾 )  =  ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 20 | 19 | necon3bi | ⊢ ( ¬  ( 𝑄 ‘ 𝐾 )  =  ( 𝑄 ‘ 𝑘 )  →  𝑘  ≠  𝐾 ) | 
						
							| 21 | 17 20 | biimtrdi | ⊢ ( ( 𝑄 ‘ 𝑘 )  =  𝐿  →  ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  𝑘  ≠  𝐾 ) ) | 
						
							| 22 | 21 | com12 | ⊢ ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  ( ( 𝑄 ‘ 𝑘 )  =  𝐿  →  𝑘  ≠  𝐾 ) ) | 
						
							| 23 | 22 | pm4.71rd | ⊢ ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  ( ( 𝑄 ‘ 𝑘 )  =  𝐿  ↔  ( 𝑘  ≠  𝐾  ∧  ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  ( ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝐿  ↔  ∃ 𝑘  ∈  𝑁 ( 𝑘  ≠  𝐾  ∧  ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) ) | 
						
							| 25 |  | rexdifsn | ⊢ ( ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿  ↔  ∃ 𝑘  ∈  𝑁 ( 𝑘  ≠  𝐾  ∧  ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) | 
						
							| 26 | 24 25 | bitr4di | ⊢ ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  ( ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝐿  ↔  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) | 
						
							| 27 | 14 26 | syl5ibcom | ⊢ ( ( 𝐿  ∈  𝑁  ∧  ∀ 𝑙  ∈  𝑁 ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝑙 )  →  ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝐿  ∈  𝑁  →  ( ∀ 𝑙  ∈  𝑁 ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝑙  →  ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) ) | 
						
							| 29 | 28 | com13 | ⊢ ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  ( ∀ 𝑙  ∈  𝑁 ∃ 𝑘  ∈  𝑁 ( 𝑄 ‘ 𝑘 )  =  𝑙  →  ( 𝐿  ∈  𝑁  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) ) | 
						
							| 30 | 11 29 | syl5 | ⊢ ( ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿  →  ( 𝑄  ∈  𝑃  →  ( 𝐿  ∈  𝑁  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) ) | 
						
							| 31 | 10 30 | jaoi | ⊢ ( ( ¬  𝑄  ∈  𝑃  ∨  ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿 )  →  ( 𝑄  ∈  𝑃  →  ( 𝐿  ∈  𝑁  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) ) | 
						
							| 32 | 31 | com13 | ⊢ ( 𝐿  ∈  𝑁  →  ( 𝑄  ∈  𝑃  →  ( ( ¬  𝑄  ∈  𝑃  ∨  ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿 )  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) ) | 
						
							| 33 | 32 | impd | ⊢ ( 𝐿  ∈  𝑁  →  ( ( 𝑄  ∈  𝑃  ∧  ( ¬  𝑄  ∈  𝑃  ∨  ¬  ( 𝑄 ‘ 𝐾 )  =  𝐿 ) )  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) | 
						
							| 34 | 9 33 | biimtrid | ⊢ ( 𝐿  ∈  𝑁  →  ( 𝑄  ∈  ( 𝑃  ∖  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐿 } )  →  ∃ 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ( 𝑄 ‘ 𝑘 )  =  𝐿 ) ) |