Step |
Hyp |
Ref |
Expression |
1 |
|
symgfix2.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
eldif |
⊢ ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ↔ ( 𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ) |
3 |
|
ianor |
⊢ ( ¬ ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ↔ ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
4 |
|
fveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ‘ 𝐾 ) = ( 𝑄 ‘ 𝐾 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ‘ 𝐾 ) = 𝐿 ↔ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
6 |
5
|
elrab |
⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ↔ ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
7 |
3 6
|
xchnxbir |
⊢ ( ¬ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ↔ ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ↔ ( 𝑄 ∈ 𝑃 ∧ ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) ) |
9 |
2 8
|
bitri |
⊢ ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) ↔ ( 𝑄 ∈ 𝑃 ∧ ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) ) |
10 |
|
pm2.21 |
⊢ ( ¬ 𝑄 ∈ 𝑃 → ( 𝑄 ∈ 𝑃 → ( 𝐿 ∈ 𝑁 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) ) |
11 |
1
|
symgmov2 |
⊢ ( 𝑄 ∈ 𝑃 → ∀ 𝑙 ∈ 𝑁 ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝑙 ) |
12 |
|
eqeq2 |
⊢ ( 𝑙 = 𝐿 → ( ( 𝑄 ‘ 𝑘 ) = 𝑙 ↔ ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑙 = 𝐿 → ( ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝑙 ↔ ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) |
14 |
13
|
rspcva |
⊢ ( ( 𝐿 ∈ 𝑁 ∧ ∀ 𝑙 ∈ 𝑁 ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝑙 ) → ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝐿 ) |
15 |
|
eqeq2 |
⊢ ( 𝐿 = ( 𝑄 ‘ 𝑘 ) → ( ( 𝑄 ‘ 𝐾 ) = 𝐿 ↔ ( 𝑄 ‘ 𝐾 ) = ( 𝑄 ‘ 𝑘 ) ) ) |
16 |
15
|
eqcoms |
⊢ ( ( 𝑄 ‘ 𝑘 ) = 𝐿 → ( ( 𝑄 ‘ 𝐾 ) = 𝐿 ↔ ( 𝑄 ‘ 𝐾 ) = ( 𝑄 ‘ 𝑘 ) ) ) |
17 |
16
|
notbid |
⊢ ( ( 𝑄 ‘ 𝑘 ) = 𝐿 → ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ↔ ¬ ( 𝑄 ‘ 𝐾 ) = ( 𝑄 ‘ 𝑘 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝐾 = 𝑘 → ( 𝑄 ‘ 𝐾 ) = ( 𝑄 ‘ 𝑘 ) ) |
19 |
18
|
eqcoms |
⊢ ( 𝑘 = 𝐾 → ( 𝑄 ‘ 𝐾 ) = ( 𝑄 ‘ 𝑘 ) ) |
20 |
19
|
necon3bi |
⊢ ( ¬ ( 𝑄 ‘ 𝐾 ) = ( 𝑄 ‘ 𝑘 ) → 𝑘 ≠ 𝐾 ) |
21 |
17 20
|
syl6bi |
⊢ ( ( 𝑄 ‘ 𝑘 ) = 𝐿 → ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → 𝑘 ≠ 𝐾 ) ) |
22 |
21
|
com12 |
⊢ ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ( ( 𝑄 ‘ 𝑘 ) = 𝐿 → 𝑘 ≠ 𝐾 ) ) |
23 |
22
|
pm4.71rd |
⊢ ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ( ( 𝑄 ‘ 𝑘 ) = 𝐿 ↔ ( 𝑘 ≠ 𝐾 ∧ ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) ) |
24 |
23
|
rexbidv |
⊢ ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ( ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝐿 ↔ ∃ 𝑘 ∈ 𝑁 ( 𝑘 ≠ 𝐾 ∧ ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) ) |
25 |
|
rexdifsn |
⊢ ( ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ↔ ∃ 𝑘 ∈ 𝑁 ( 𝑘 ≠ 𝐾 ∧ ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) |
26 |
24 25
|
bitr4di |
⊢ ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ( ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝐿 ↔ ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) |
27 |
14 26
|
syl5ibcom |
⊢ ( ( 𝐿 ∈ 𝑁 ∧ ∀ 𝑙 ∈ 𝑁 ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝑙 ) → ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) |
28 |
27
|
ex |
⊢ ( 𝐿 ∈ 𝑁 → ( ∀ 𝑙 ∈ 𝑁 ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝑙 → ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) ) |
29 |
28
|
com13 |
⊢ ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ( ∀ 𝑙 ∈ 𝑁 ∃ 𝑘 ∈ 𝑁 ( 𝑄 ‘ 𝑘 ) = 𝑙 → ( 𝐿 ∈ 𝑁 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) ) |
30 |
11 29
|
syl5 |
⊢ ( ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 → ( 𝑄 ∈ 𝑃 → ( 𝐿 ∈ 𝑁 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) ) |
31 |
10 30
|
jaoi |
⊢ ( ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) → ( 𝑄 ∈ 𝑃 → ( 𝐿 ∈ 𝑁 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) ) |
32 |
31
|
com13 |
⊢ ( 𝐿 ∈ 𝑁 → ( 𝑄 ∈ 𝑃 → ( ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) ) |
33 |
32
|
impd |
⊢ ( 𝐿 ∈ 𝑁 → ( ( 𝑄 ∈ 𝑃 ∧ ( ¬ 𝑄 ∈ 𝑃 ∨ ¬ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) |
34 |
9 33
|
syl5bi |
⊢ ( 𝐿 ∈ 𝑁 → ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐿 } ) → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑘 ) = 𝐿 ) ) |