Metamath Proof Explorer


Theorem symgfix2

Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019)

Ref Expression
Hypothesis symgfix2.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
Assertion symgfix2 ( 𝐿𝑁 → ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐿 } ) → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) )

Proof

Step Hyp Ref Expression
1 symgfix2.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 eldif ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐿 } ) ↔ ( 𝑄𝑃 ∧ ¬ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐿 } ) )
3 ianor ( ¬ ( 𝑄𝑃 ∧ ( 𝑄𝐾 ) = 𝐿 ) ↔ ( ¬ 𝑄𝑃 ∨ ¬ ( 𝑄𝐾 ) = 𝐿 ) )
4 fveq1 ( 𝑞 = 𝑄 → ( 𝑞𝐾 ) = ( 𝑄𝐾 ) )
5 4 eqeq1d ( 𝑞 = 𝑄 → ( ( 𝑞𝐾 ) = 𝐿 ↔ ( 𝑄𝐾 ) = 𝐿 ) )
6 5 elrab ( 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐿 } ↔ ( 𝑄𝑃 ∧ ( 𝑄𝐾 ) = 𝐿 ) )
7 3 6 xchnxbir ( ¬ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐿 } ↔ ( ¬ 𝑄𝑃 ∨ ¬ ( 𝑄𝐾 ) = 𝐿 ) )
8 7 anbi2i ( ( 𝑄𝑃 ∧ ¬ 𝑄 ∈ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐿 } ) ↔ ( 𝑄𝑃 ∧ ( ¬ 𝑄𝑃 ∨ ¬ ( 𝑄𝐾 ) = 𝐿 ) ) )
9 2 8 bitri ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐿 } ) ↔ ( 𝑄𝑃 ∧ ( ¬ 𝑄𝑃 ∨ ¬ ( 𝑄𝐾 ) = 𝐿 ) ) )
10 pm2.21 ( ¬ 𝑄𝑃 → ( 𝑄𝑃 → ( 𝐿𝑁 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) ) )
11 1 symgmov2 ( 𝑄𝑃 → ∀ 𝑙𝑁𝑘𝑁 ( 𝑄𝑘 ) = 𝑙 )
12 eqeq2 ( 𝑙 = 𝐿 → ( ( 𝑄𝑘 ) = 𝑙 ↔ ( 𝑄𝑘 ) = 𝐿 ) )
13 12 rexbidv ( 𝑙 = 𝐿 → ( ∃ 𝑘𝑁 ( 𝑄𝑘 ) = 𝑙 ↔ ∃ 𝑘𝑁 ( 𝑄𝑘 ) = 𝐿 ) )
14 13 rspcva ( ( 𝐿𝑁 ∧ ∀ 𝑙𝑁𝑘𝑁 ( 𝑄𝑘 ) = 𝑙 ) → ∃ 𝑘𝑁 ( 𝑄𝑘 ) = 𝐿 )
15 eqeq2 ( 𝐿 = ( 𝑄𝑘 ) → ( ( 𝑄𝐾 ) = 𝐿 ↔ ( 𝑄𝐾 ) = ( 𝑄𝑘 ) ) )
16 15 eqcoms ( ( 𝑄𝑘 ) = 𝐿 → ( ( 𝑄𝐾 ) = 𝐿 ↔ ( 𝑄𝐾 ) = ( 𝑄𝑘 ) ) )
17 16 notbid ( ( 𝑄𝑘 ) = 𝐿 → ( ¬ ( 𝑄𝐾 ) = 𝐿 ↔ ¬ ( 𝑄𝐾 ) = ( 𝑄𝑘 ) ) )
18 fveq2 ( 𝐾 = 𝑘 → ( 𝑄𝐾 ) = ( 𝑄𝑘 ) )
19 18 eqcoms ( 𝑘 = 𝐾 → ( 𝑄𝐾 ) = ( 𝑄𝑘 ) )
20 19 necon3bi ( ¬ ( 𝑄𝐾 ) = ( 𝑄𝑘 ) → 𝑘𝐾 )
21 17 20 syl6bi ( ( 𝑄𝑘 ) = 𝐿 → ( ¬ ( 𝑄𝐾 ) = 𝐿𝑘𝐾 ) )
22 21 com12 ( ¬ ( 𝑄𝐾 ) = 𝐿 → ( ( 𝑄𝑘 ) = 𝐿𝑘𝐾 ) )
23 22 pm4.71rd ( ¬ ( 𝑄𝐾 ) = 𝐿 → ( ( 𝑄𝑘 ) = 𝐿 ↔ ( 𝑘𝐾 ∧ ( 𝑄𝑘 ) = 𝐿 ) ) )
24 23 rexbidv ( ¬ ( 𝑄𝐾 ) = 𝐿 → ( ∃ 𝑘𝑁 ( 𝑄𝑘 ) = 𝐿 ↔ ∃ 𝑘𝑁 ( 𝑘𝐾 ∧ ( 𝑄𝑘 ) = 𝐿 ) ) )
25 rexdifsn ( ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ↔ ∃ 𝑘𝑁 ( 𝑘𝐾 ∧ ( 𝑄𝑘 ) = 𝐿 ) )
26 24 25 bitr4di ( ¬ ( 𝑄𝐾 ) = 𝐿 → ( ∃ 𝑘𝑁 ( 𝑄𝑘 ) = 𝐿 ↔ ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) )
27 14 26 syl5ibcom ( ( 𝐿𝑁 ∧ ∀ 𝑙𝑁𝑘𝑁 ( 𝑄𝑘 ) = 𝑙 ) → ( ¬ ( 𝑄𝐾 ) = 𝐿 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) )
28 27 ex ( 𝐿𝑁 → ( ∀ 𝑙𝑁𝑘𝑁 ( 𝑄𝑘 ) = 𝑙 → ( ¬ ( 𝑄𝐾 ) = 𝐿 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) ) )
29 28 com13 ( ¬ ( 𝑄𝐾 ) = 𝐿 → ( ∀ 𝑙𝑁𝑘𝑁 ( 𝑄𝑘 ) = 𝑙 → ( 𝐿𝑁 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) ) )
30 11 29 syl5 ( ¬ ( 𝑄𝐾 ) = 𝐿 → ( 𝑄𝑃 → ( 𝐿𝑁 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) ) )
31 10 30 jaoi ( ( ¬ 𝑄𝑃 ∨ ¬ ( 𝑄𝐾 ) = 𝐿 ) → ( 𝑄𝑃 → ( 𝐿𝑁 → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) ) )
32 31 com13 ( 𝐿𝑁 → ( 𝑄𝑃 → ( ( ¬ 𝑄𝑃 ∨ ¬ ( 𝑄𝐾 ) = 𝐿 ) → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) ) )
33 32 impd ( 𝐿𝑁 → ( ( 𝑄𝑃 ∧ ( ¬ 𝑄𝑃 ∨ ¬ ( 𝑄𝐾 ) = 𝐿 ) ) → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) )
34 9 33 syl5bi ( 𝐿𝑁 → ( 𝑄 ∈ ( 𝑃 ∖ { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐿 } ) → ∃ 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑘 ) = 𝐿 ) )