Step |
Hyp |
Ref |
Expression |
1 |
|
symgfix2.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
eldif |
|- ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) <-> ( Q e. P /\ -. Q e. { q e. P | ( q ` K ) = L } ) ) |
3 |
|
ianor |
|- ( -. ( Q e. P /\ ( Q ` K ) = L ) <-> ( -. Q e. P \/ -. ( Q ` K ) = L ) ) |
4 |
|
fveq1 |
|- ( q = Q -> ( q ` K ) = ( Q ` K ) ) |
5 |
4
|
eqeq1d |
|- ( q = Q -> ( ( q ` K ) = L <-> ( Q ` K ) = L ) ) |
6 |
5
|
elrab |
|- ( Q e. { q e. P | ( q ` K ) = L } <-> ( Q e. P /\ ( Q ` K ) = L ) ) |
7 |
3 6
|
xchnxbir |
|- ( -. Q e. { q e. P | ( q ` K ) = L } <-> ( -. Q e. P \/ -. ( Q ` K ) = L ) ) |
8 |
7
|
anbi2i |
|- ( ( Q e. P /\ -. Q e. { q e. P | ( q ` K ) = L } ) <-> ( Q e. P /\ ( -. Q e. P \/ -. ( Q ` K ) = L ) ) ) |
9 |
2 8
|
bitri |
|- ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) <-> ( Q e. P /\ ( -. Q e. P \/ -. ( Q ` K ) = L ) ) ) |
10 |
|
pm2.21 |
|- ( -. Q e. P -> ( Q e. P -> ( L e. N -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) |
11 |
1
|
symgmov2 |
|- ( Q e. P -> A. l e. N E. k e. N ( Q ` k ) = l ) |
12 |
|
eqeq2 |
|- ( l = L -> ( ( Q ` k ) = l <-> ( Q ` k ) = L ) ) |
13 |
12
|
rexbidv |
|- ( l = L -> ( E. k e. N ( Q ` k ) = l <-> E. k e. N ( Q ` k ) = L ) ) |
14 |
13
|
rspcva |
|- ( ( L e. N /\ A. l e. N E. k e. N ( Q ` k ) = l ) -> E. k e. N ( Q ` k ) = L ) |
15 |
|
eqeq2 |
|- ( L = ( Q ` k ) -> ( ( Q ` K ) = L <-> ( Q ` K ) = ( Q ` k ) ) ) |
16 |
15
|
eqcoms |
|- ( ( Q ` k ) = L -> ( ( Q ` K ) = L <-> ( Q ` K ) = ( Q ` k ) ) ) |
17 |
16
|
notbid |
|- ( ( Q ` k ) = L -> ( -. ( Q ` K ) = L <-> -. ( Q ` K ) = ( Q ` k ) ) ) |
18 |
|
fveq2 |
|- ( K = k -> ( Q ` K ) = ( Q ` k ) ) |
19 |
18
|
eqcoms |
|- ( k = K -> ( Q ` K ) = ( Q ` k ) ) |
20 |
19
|
necon3bi |
|- ( -. ( Q ` K ) = ( Q ` k ) -> k =/= K ) |
21 |
17 20
|
syl6bi |
|- ( ( Q ` k ) = L -> ( -. ( Q ` K ) = L -> k =/= K ) ) |
22 |
21
|
com12 |
|- ( -. ( Q ` K ) = L -> ( ( Q ` k ) = L -> k =/= K ) ) |
23 |
22
|
pm4.71rd |
|- ( -. ( Q ` K ) = L -> ( ( Q ` k ) = L <-> ( k =/= K /\ ( Q ` k ) = L ) ) ) |
24 |
23
|
rexbidv |
|- ( -. ( Q ` K ) = L -> ( E. k e. N ( Q ` k ) = L <-> E. k e. N ( k =/= K /\ ( Q ` k ) = L ) ) ) |
25 |
|
rexdifsn |
|- ( E. k e. ( N \ { K } ) ( Q ` k ) = L <-> E. k e. N ( k =/= K /\ ( Q ` k ) = L ) ) |
26 |
24 25
|
bitr4di |
|- ( -. ( Q ` K ) = L -> ( E. k e. N ( Q ` k ) = L <-> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) |
27 |
14 26
|
syl5ibcom |
|- ( ( L e. N /\ A. l e. N E. k e. N ( Q ` k ) = l ) -> ( -. ( Q ` K ) = L -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) |
28 |
27
|
ex |
|- ( L e. N -> ( A. l e. N E. k e. N ( Q ` k ) = l -> ( -. ( Q ` K ) = L -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) |
29 |
28
|
com13 |
|- ( -. ( Q ` K ) = L -> ( A. l e. N E. k e. N ( Q ` k ) = l -> ( L e. N -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) |
30 |
11 29
|
syl5 |
|- ( -. ( Q ` K ) = L -> ( Q e. P -> ( L e. N -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) |
31 |
10 30
|
jaoi |
|- ( ( -. Q e. P \/ -. ( Q ` K ) = L ) -> ( Q e. P -> ( L e. N -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) |
32 |
31
|
com13 |
|- ( L e. N -> ( Q e. P -> ( ( -. Q e. P \/ -. ( Q ` K ) = L ) -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) |
33 |
32
|
impd |
|- ( L e. N -> ( ( Q e. P /\ ( -. Q e. P \/ -. ( Q ` K ) = L ) ) -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) |
34 |
9 33
|
syl5bi |
|- ( L e. N -> ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) |