| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgfix2.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | eldif |  |-  ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) <-> ( Q e. P /\ -. Q e. { q e. P | ( q ` K ) = L } ) ) | 
						
							| 3 |  | ianor |  |-  ( -. ( Q e. P /\ ( Q ` K ) = L ) <-> ( -. Q e. P \/ -. ( Q ` K ) = L ) ) | 
						
							| 4 |  | fveq1 |  |-  ( q = Q -> ( q ` K ) = ( Q ` K ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( q = Q -> ( ( q ` K ) = L <-> ( Q ` K ) = L ) ) | 
						
							| 6 | 5 | elrab |  |-  ( Q e. { q e. P | ( q ` K ) = L } <-> ( Q e. P /\ ( Q ` K ) = L ) ) | 
						
							| 7 | 3 6 | xchnxbir |  |-  ( -. Q e. { q e. P | ( q ` K ) = L } <-> ( -. Q e. P \/ -. ( Q ` K ) = L ) ) | 
						
							| 8 | 7 | anbi2i |  |-  ( ( Q e. P /\ -. Q e. { q e. P | ( q ` K ) = L } ) <-> ( Q e. P /\ ( -. Q e. P \/ -. ( Q ` K ) = L ) ) ) | 
						
							| 9 | 2 8 | bitri |  |-  ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) <-> ( Q e. P /\ ( -. Q e. P \/ -. ( Q ` K ) = L ) ) ) | 
						
							| 10 |  | pm2.21 |  |-  ( -. Q e. P -> ( Q e. P -> ( L e. N -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) | 
						
							| 11 | 1 | symgmov2 |  |-  ( Q e. P -> A. l e. N E. k e. N ( Q ` k ) = l ) | 
						
							| 12 |  | eqeq2 |  |-  ( l = L -> ( ( Q ` k ) = l <-> ( Q ` k ) = L ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( l = L -> ( E. k e. N ( Q ` k ) = l <-> E. k e. N ( Q ` k ) = L ) ) | 
						
							| 14 | 13 | rspcva |  |-  ( ( L e. N /\ A. l e. N E. k e. N ( Q ` k ) = l ) -> E. k e. N ( Q ` k ) = L ) | 
						
							| 15 |  | eqeq2 |  |-  ( L = ( Q ` k ) -> ( ( Q ` K ) = L <-> ( Q ` K ) = ( Q ` k ) ) ) | 
						
							| 16 | 15 | eqcoms |  |-  ( ( Q ` k ) = L -> ( ( Q ` K ) = L <-> ( Q ` K ) = ( Q ` k ) ) ) | 
						
							| 17 | 16 | notbid |  |-  ( ( Q ` k ) = L -> ( -. ( Q ` K ) = L <-> -. ( Q ` K ) = ( Q ` k ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( K = k -> ( Q ` K ) = ( Q ` k ) ) | 
						
							| 19 | 18 | eqcoms |  |-  ( k = K -> ( Q ` K ) = ( Q ` k ) ) | 
						
							| 20 | 19 | necon3bi |  |-  ( -. ( Q ` K ) = ( Q ` k ) -> k =/= K ) | 
						
							| 21 | 17 20 | biimtrdi |  |-  ( ( Q ` k ) = L -> ( -. ( Q ` K ) = L -> k =/= K ) ) | 
						
							| 22 | 21 | com12 |  |-  ( -. ( Q ` K ) = L -> ( ( Q ` k ) = L -> k =/= K ) ) | 
						
							| 23 | 22 | pm4.71rd |  |-  ( -. ( Q ` K ) = L -> ( ( Q ` k ) = L <-> ( k =/= K /\ ( Q ` k ) = L ) ) ) | 
						
							| 24 | 23 | rexbidv |  |-  ( -. ( Q ` K ) = L -> ( E. k e. N ( Q ` k ) = L <-> E. k e. N ( k =/= K /\ ( Q ` k ) = L ) ) ) | 
						
							| 25 |  | rexdifsn |  |-  ( E. k e. ( N \ { K } ) ( Q ` k ) = L <-> E. k e. N ( k =/= K /\ ( Q ` k ) = L ) ) | 
						
							| 26 | 24 25 | bitr4di |  |-  ( -. ( Q ` K ) = L -> ( E. k e. N ( Q ` k ) = L <-> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) | 
						
							| 27 | 14 26 | syl5ibcom |  |-  ( ( L e. N /\ A. l e. N E. k e. N ( Q ` k ) = l ) -> ( -. ( Q ` K ) = L -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) | 
						
							| 28 | 27 | ex |  |-  ( L e. N -> ( A. l e. N E. k e. N ( Q ` k ) = l -> ( -. ( Q ` K ) = L -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) | 
						
							| 29 | 28 | com13 |  |-  ( -. ( Q ` K ) = L -> ( A. l e. N E. k e. N ( Q ` k ) = l -> ( L e. N -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) | 
						
							| 30 | 11 29 | syl5 |  |-  ( -. ( Q ` K ) = L -> ( Q e. P -> ( L e. N -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) | 
						
							| 31 | 10 30 | jaoi |  |-  ( ( -. Q e. P \/ -. ( Q ` K ) = L ) -> ( Q e. P -> ( L e. N -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) | 
						
							| 32 | 31 | com13 |  |-  ( L e. N -> ( Q e. P -> ( ( -. Q e. P \/ -. ( Q ` K ) = L ) -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) ) | 
						
							| 33 | 32 | impd |  |-  ( L e. N -> ( ( Q e. P /\ ( -. Q e. P \/ -. ( Q ` K ) = L ) ) -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) | 
						
							| 34 | 9 33 | biimtrid |  |-  ( L e. N -> ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> E. k e. ( N \ { K } ) ( Q ` k ) = L ) ) |