Metamath Proof Explorer


Theorem thincmon

Description: In a thin category, all morphisms are monomorphisms. The converse does not hold. See grptcmon . (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincid.c ( 𝜑𝐶 ∈ ThinCat )
thincid.b 𝐵 = ( Base ‘ 𝐶 )
thincid.h 𝐻 = ( Hom ‘ 𝐶 )
thincid.x ( 𝜑𝑋𝐵 )
thincmon.y ( 𝜑𝑌𝐵 )
thincmon.m 𝑀 = ( Mono ‘ 𝐶 )
Assertion thincmon ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )

Proof

Step Hyp Ref Expression
1 thincid.c ( 𝜑𝐶 ∈ ThinCat )
2 thincid.b 𝐵 = ( Base ‘ 𝐶 )
3 thincid.h 𝐻 = ( Hom ‘ 𝐶 )
4 thincid.x ( 𝜑𝑋𝐵 )
5 thincmon.y ( 𝜑𝑌𝐵 )
6 thincmon.m 𝑀 = ( Mono ‘ 𝐶 )
7 simpr1 ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑧𝐵 )
8 4 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑋𝐵 )
9 simpr2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) )
10 simpr3 ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ∈ ( 𝑧 𝐻 𝑋 ) )
11 1 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐶 ∈ ThinCat )
12 7 8 9 10 2 3 11 thincmo2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑔 = )
13 12 a1d ( ( 𝜑 ∧ ( 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∧ ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑓 ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ) → 𝑔 = ) )
14 13 ralrimivvva ( 𝜑 → ∀ 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝑓 ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ) → 𝑔 = ) )
15 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
16 1 thinccd ( 𝜑𝐶 ∈ Cat )
17 2 3 15 6 16 4 5 ismon2 ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧𝐵𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝑓 ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( ⟨ 𝑧 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ) → 𝑔 = ) ) ) )
18 14 17 mpbiran2d ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )
19 18 eqrdv ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )