Step |
Hyp |
Ref |
Expression |
1 |
|
trlconid.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
trlconid.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
trlconid.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
trlconid.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
5 2 3 4
|
trlcoat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
7 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → 𝐹 ∈ 𝑇 ) |
9 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → 𝐺 ∈ 𝑇 ) |
10 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
12 |
1 5 2 3 4
|
trlnidatb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( ( 𝐹 ∘ 𝐺 ) ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Atoms ‘ 𝐾 ) ) ) |
13 |
7 11 12
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝐹 ∘ 𝐺 ) ≠ ( I ↾ 𝐵 ) ↔ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Atoms ‘ 𝐾 ) ) ) |
14 |
6 13
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝐹 ∘ 𝐺 ) ≠ ( I ↾ 𝐵 ) ) |