| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
| 2 |
|
sbcg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) |
| 3 |
1 2
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) |
| 4 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴 ) ) |
| 5 |
1 4
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴 ) ) |
| 6 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴 ) ) |
| 7 |
1 6
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴 ) ) |
| 8 |
|
imbi13 |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) ) ) ) |
| 10 |
1 3 5 7 9
|
e1111 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) |
| 11 |
|
sbcim2g |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ) ) |
| 12 |
1 11
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ) ) |
| 13 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) ) |
| 14 |
13
|
biimprcd |
⊢ ( ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ) → ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) ) |
| 15 |
10 12 14
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) |
| 16 |
|
pm3.31 |
⊢ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 17 |
|
pm3.3 |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) |
| 18 |
16 17
|
impbii |
⊢ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 19 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) ) |
| 20 |
19
|
biimprd |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) → ( ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) ) |
| 21 |
15 18 20
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 22 |
|
pm3.31 |
⊢ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 23 |
|
pm3.3 |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ) |
| 24 |
22 23
|
impbii |
⊢ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 25 |
24
|
ax-gen |
⊢ ∀ 𝑥 ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 26 |
|
sbcbi |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) ) |
| 27 |
1 25 26
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 28 |
|
bitr3 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) ) |
| 29 |
28
|
com12 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) ) |
| 30 |
21 27 29
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 31 |
30
|
gen11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ∀ 𝑦 ( [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 32 |
|
albi |
⊢ ( ∀ 𝑦 ( [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 33 |
31 32
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 34 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 35 |
34
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 36 |
1 35
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 37 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ↔ ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) ) |
| 38 |
37
|
biimprcd |
⊢ ( ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) ) |
| 39 |
33 36 38
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 40 |
39
|
gen11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ∀ 𝑧 ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 41 |
|
albi |
⊢ ( ∀ 𝑧 ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 42 |
40 41
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 43 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 44 |
43
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 45 |
1 44
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 46 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ↔ ( ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) ) |
| 47 |
46
|
biimprcd |
⊢ ( ( ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) ) |
| 48 |
42 45 47
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
| 49 |
|
dftr2 |
⊢ ( Tr 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 50 |
|
biantr |
⊢ ( ( ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ∧ ( Tr 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ Tr 𝐴 ) ) |
| 51 |
50
|
ex |
⊢ ( ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( ( Tr 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ Tr 𝐴 ) ) ) |
| 52 |
48 49 51
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ Tr 𝐴 ) ) |
| 53 |
|
dftr2 |
⊢ ( Tr 𝑥 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 54 |
53
|
ax-gen |
⊢ ∀ 𝑥 ( Tr 𝑥 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 55 |
|
sbcbi |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( Tr 𝑥 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) ) |
| 56 |
1 54 55
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) ) |
| 57 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ Tr 𝐴 ) ↔ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ Tr 𝐴 ) ) ) |
| 58 |
57
|
biimprcd |
⊢ ( ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ Tr 𝐴 ) → ( ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) → ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ Tr 𝐴 ) ) ) |
| 59 |
52 56 58
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ Tr 𝐴 ) ) |
| 60 |
59
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ Tr 𝐴 ) ) |