Step |
Hyp |
Ref |
Expression |
1 |
|
ttgval.n |
⊢ 𝐺 = ( toTG ‘ 𝐻 ) |
2 |
|
ttgitvval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ttgitvval.b |
⊢ 𝑃 = ( Base ‘ 𝐻 ) |
4 |
|
ttgitvval.m |
⊢ − = ( -g ‘ 𝐻 ) |
5 |
|
ttgitvval.s |
⊢ · = ( ·𝑠 ‘ 𝐻 ) |
6 |
|
ttgelitv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
7 |
|
ttgelitv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
8 |
|
ttgbtwnid.r |
⊢ 𝑅 = ( Base ‘ ( Scalar ‘ 𝐻 ) ) |
9 |
|
ttgbtwnid.2 |
⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ 𝑅 ) |
10 |
|
ttgbtwnid.1 |
⊢ ( 𝜑 → 𝐻 ∈ ℂMod ) |
11 |
|
ttgbtwnid.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) ) |
12 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → 𝜑 ) |
13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) |
14 |
|
clmlmod |
⊢ ( 𝐻 ∈ ℂMod → 𝐻 ∈ LMod ) |
15 |
10 14
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ LMod ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
17 |
3 16 4
|
lmodsubid |
⊢ ( ( 𝐻 ∈ LMod ∧ 𝑋 ∈ 𝑃 ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
18 |
15 6 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
20 |
19
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → ( 𝑘 · ( 𝑋 − 𝑋 ) ) = ( 𝑘 · ( 0g ‘ 𝐻 ) ) ) |
21 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → 𝐻 ∈ LMod ) |
22 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → ( 0 [,] 1 ) ⊆ 𝑅 ) |
23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → 𝑘 ∈ ( 0 [,] 1 ) ) |
24 |
22 23
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → 𝑘 ∈ 𝑅 ) |
25 |
|
eqid |
⊢ ( Scalar ‘ 𝐻 ) = ( Scalar ‘ 𝐻 ) |
26 |
25 5 8 16
|
lmodvs0 |
⊢ ( ( 𝐻 ∈ LMod ∧ 𝑘 ∈ 𝑅 ) → ( 𝑘 · ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
27 |
21 24 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → ( 𝑘 · ( 0g ‘ 𝐻 ) ) = ( 0g ‘ 𝐻 ) ) |
28 |
13 20 27
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → ( 𝑌 − 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
29 |
3 16 4
|
lmodsubeq0 |
⊢ ( ( 𝐻 ∈ LMod ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑃 ) → ( ( 𝑌 − 𝑋 ) = ( 0g ‘ 𝐻 ) ↔ 𝑌 = 𝑋 ) ) |
30 |
15 7 6 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑌 − 𝑋 ) = ( 0g ‘ 𝐻 ) ↔ 𝑌 = 𝑋 ) ) |
31 |
30
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑌 − 𝑋 ) = ( 0g ‘ 𝐻 ) ) → 𝑌 = 𝑋 ) |
32 |
12 28 31
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → 𝑌 = 𝑋 ) |
33 |
32
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) → 𝑋 = 𝑌 ) |
34 |
1 2 3 4 5 6 6 10 7
|
ttgelitv |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) ↔ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) ) |
35 |
11 34
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑌 − 𝑋 ) = ( 𝑘 · ( 𝑋 − 𝑋 ) ) ) |
36 |
33 35
|
r19.29a |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |