| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n | ⊢ 𝐺  =  ( toTG ‘ 𝐻 ) | 
						
							| 2 |  | ttgitvval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ttgitvval.b | ⊢ 𝑃  =  ( Base ‘ 𝐻 ) | 
						
							| 4 |  | ttgitvval.m | ⊢  −   =  ( -g ‘ 𝐻 ) | 
						
							| 5 |  | ttgitvval.s | ⊢  ·   =  (  ·𝑠  ‘ 𝐻 ) | 
						
							| 6 |  | ttgelitv.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 7 |  | ttgelitv.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 8 |  | ttgbtwnid.r | ⊢ 𝑅  =  ( Base ‘ ( Scalar ‘ 𝐻 ) ) | 
						
							| 9 |  | ttgbtwnid.2 | ⊢ ( 𝜑  →  ( 0 [,] 1 )  ⊆  𝑅 ) | 
						
							| 10 |  | ttgbtwnid.1 | ⊢ ( 𝜑  →  𝐻  ∈  ℂMod ) | 
						
							| 11 |  | ttgbtwnid.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 𝐼 𝑋 ) ) | 
						
							| 12 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  𝜑 ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) ) | 
						
							| 14 |  | clmlmod | ⊢ ( 𝐻  ∈  ℂMod  →  𝐻  ∈  LMod ) | 
						
							| 15 | 10 14 | syl | ⊢ ( 𝜑  →  𝐻  ∈  LMod ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 17 | 3 16 4 | lmodsubid | ⊢ ( ( 𝐻  ∈  LMod  ∧  𝑋  ∈  𝑃 )  →  ( 𝑋  −  𝑋 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 18 | 15 6 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  −  𝑋 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  ( 𝑋  −  𝑋 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  ( 𝑘  ·  ( 𝑋  −  𝑋 ) )  =  ( 𝑘  ·  ( 0g ‘ 𝐻 ) ) ) | 
						
							| 21 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  𝐻  ∈  LMod ) | 
						
							| 22 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  ( 0 [,] 1 )  ⊆  𝑅 ) | 
						
							| 23 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  𝑘  ∈  ( 0 [,] 1 ) ) | 
						
							| 24 | 22 23 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  𝑘  ∈  𝑅 ) | 
						
							| 25 |  | eqid | ⊢ ( Scalar ‘ 𝐻 )  =  ( Scalar ‘ 𝐻 ) | 
						
							| 26 | 25 5 8 16 | lmodvs0 | ⊢ ( ( 𝐻  ∈  LMod  ∧  𝑘  ∈  𝑅 )  →  ( 𝑘  ·  ( 0g ‘ 𝐻 ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 27 | 21 24 26 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  ( 𝑘  ·  ( 0g ‘ 𝐻 ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 28 | 13 20 27 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  ( 𝑌  −  𝑋 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 29 | 3 16 4 | lmodsubeq0 | ⊢ ( ( 𝐻  ∈  LMod  ∧  𝑌  ∈  𝑃  ∧  𝑋  ∈  𝑃 )  →  ( ( 𝑌  −  𝑋 )  =  ( 0g ‘ 𝐻 )  ↔  𝑌  =  𝑋 ) ) | 
						
							| 30 | 15 7 6 29 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑌  −  𝑋 )  =  ( 0g ‘ 𝐻 )  ↔  𝑌  =  𝑋 ) ) | 
						
							| 31 | 30 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝑌  −  𝑋 )  =  ( 0g ‘ 𝐻 ) )  →  𝑌  =  𝑋 ) | 
						
							| 32 | 12 28 31 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  𝑌  =  𝑋 ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) )  →  𝑋  =  𝑌 ) | 
						
							| 34 | 1 2 3 4 5 6 6 10 7 | ttgelitv | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( 𝑋 𝐼 𝑋 )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) ) ) | 
						
							| 35 | 11 34 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑌  −  𝑋 )  =  ( 𝑘  ·  ( 𝑋  −  𝑋 ) ) ) | 
						
							| 36 | 33 35 | r19.29a | ⊢ ( 𝜑  →  𝑋  =  𝑌 ) |