Metamath Proof Explorer


Theorem ttgbtwnid

Description: Any subcomplex module equipped with the betweenness operation fulfills the identity of betweenness (Axiom A6). (Contributed by Thierry Arnoux, 26-Mar-2019)

Ref Expression
Hypotheses ttgval.n 𝐺 = ( toTG ‘ 𝐻 )
ttgitvval.i 𝐼 = ( Itv ‘ 𝐺 )
ttgitvval.b 𝑃 = ( Base ‘ 𝐻 )
ttgitvval.m = ( -g𝐻 )
ttgitvval.s · = ( ·𝑠𝐻 )
ttgelitv.x ( 𝜑𝑋𝑃 )
ttgelitv.y ( 𝜑𝑌𝑃 )
ttgbtwnid.r 𝑅 = ( Base ‘ ( Scalar ‘ 𝐻 ) )
ttgbtwnid.2 ( 𝜑 → ( 0 [,] 1 ) ⊆ 𝑅 )
ttgbtwnid.1 ( 𝜑𝐻 ∈ ℂMod )
ttgbtwnid.y ( 𝜑𝑌 ∈ ( 𝑋 𝐼 𝑋 ) )
Assertion ttgbtwnid ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 ttgval.n 𝐺 = ( toTG ‘ 𝐻 )
2 ttgitvval.i 𝐼 = ( Itv ‘ 𝐺 )
3 ttgitvval.b 𝑃 = ( Base ‘ 𝐻 )
4 ttgitvval.m = ( -g𝐻 )
5 ttgitvval.s · = ( ·𝑠𝐻 )
6 ttgelitv.x ( 𝜑𝑋𝑃 )
7 ttgelitv.y ( 𝜑𝑌𝑃 )
8 ttgbtwnid.r 𝑅 = ( Base ‘ ( Scalar ‘ 𝐻 ) )
9 ttgbtwnid.2 ( 𝜑 → ( 0 [,] 1 ) ⊆ 𝑅 )
10 ttgbtwnid.1 ( 𝜑𝐻 ∈ ℂMod )
11 ttgbtwnid.y ( 𝜑𝑌 ∈ ( 𝑋 𝐼 𝑋 ) )
12 simpll ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → 𝜑 )
13 simpr ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) )
14 clmlmod ( 𝐻 ∈ ℂMod → 𝐻 ∈ LMod )
15 10 14 syl ( 𝜑𝐻 ∈ LMod )
16 eqid ( 0g𝐻 ) = ( 0g𝐻 )
17 3 16 4 lmodsubid ( ( 𝐻 ∈ LMod ∧ 𝑋𝑃 ) → ( 𝑋 𝑋 ) = ( 0g𝐻 ) )
18 15 6 17 syl2anc ( 𝜑 → ( 𝑋 𝑋 ) = ( 0g𝐻 ) )
19 18 ad2antrr ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → ( 𝑋 𝑋 ) = ( 0g𝐻 ) )
20 19 oveq2d ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → ( 𝑘 · ( 𝑋 𝑋 ) ) = ( 𝑘 · ( 0g𝐻 ) ) )
21 15 ad2antrr ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → 𝐻 ∈ LMod )
22 9 ad2antrr ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → ( 0 [,] 1 ) ⊆ 𝑅 )
23 simplr ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → 𝑘 ∈ ( 0 [,] 1 ) )
24 22 23 sseldd ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → 𝑘𝑅 )
25 eqid ( Scalar ‘ 𝐻 ) = ( Scalar ‘ 𝐻 )
26 25 5 8 16 lmodvs0 ( ( 𝐻 ∈ LMod ∧ 𝑘𝑅 ) → ( 𝑘 · ( 0g𝐻 ) ) = ( 0g𝐻 ) )
27 21 24 26 syl2anc ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → ( 𝑘 · ( 0g𝐻 ) ) = ( 0g𝐻 ) )
28 13 20 27 3eqtrd ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → ( 𝑌 𝑋 ) = ( 0g𝐻 ) )
29 3 16 4 lmodsubeq0 ( ( 𝐻 ∈ LMod ∧ 𝑌𝑃𝑋𝑃 ) → ( ( 𝑌 𝑋 ) = ( 0g𝐻 ) ↔ 𝑌 = 𝑋 ) )
30 15 7 6 29 syl3anc ( 𝜑 → ( ( 𝑌 𝑋 ) = ( 0g𝐻 ) ↔ 𝑌 = 𝑋 ) )
31 30 biimpa ( ( 𝜑 ∧ ( 𝑌 𝑋 ) = ( 0g𝐻 ) ) → 𝑌 = 𝑋 )
32 12 28 31 syl2anc ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → 𝑌 = 𝑋 )
33 32 eqcomd ( ( ( 𝜑𝑘 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) → 𝑋 = 𝑌 )
34 1 2 3 4 5 6 6 10 7 ttgelitv ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑋 ) ↔ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) ) )
35 11 34 mpbid ( 𝜑 → ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑌 𝑋 ) = ( 𝑘 · ( 𝑋 𝑋 ) ) )
36 33 35 r19.29a ( 𝜑𝑋 = 𝑌 )